Advertisements
Advertisements
प्रश्न
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
उत्तर
Given that y = `(cos x)^((cos x)^((cosx)....oo)`,
⇒ y = (cos x)y .....`[y = (cos x)^((cos x)^((cosx)....oo))]`
Taking log on both sides log y = y.log(cos x)
Differentiating both sides w.r.t. x
`1/y * "dy"/"dx" = y * "d"/"dx" log (cos x ) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y * 1/cosx * "d"/"dx" (cos x) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y* 1/cosx * (- sin x) + log(cosx) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" - log(cos x) "dy"/"dx"` = – y tan x
⇒ `[1/y - log (cosx)] "dy"/"dx"` = – y tan x
⇒ `"dy"/"dx" = (- y tanx)/(1/y - log(cosx))`
= `(y^2 tanx)/(y log cos x - 1)`
Hence, `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
The derivative of log10x w.r.t. x is ______.
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
The domain of the function defined by f(x) = logx 10 is