मराठी

If yx = ey – x, prove that dydxdydx=(1+logy)2logy - Mathematics

Advertisements
Advertisements

प्रश्न

If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`

बेरीज

उत्तर

Given that: yx = ey – x 

Taking log on both sides log yx = log ey – x 

⇒ x log y = (y – x)log e

⇒ x log y = y – x   .....[∵ log e = 1]

⇒ x log y + x = y

⇒ x(log y + 1) = y

⇒ x = `y/(log y + 1)`

Differentiating both sides w.r.t. y

`"dx"/"dy" = "d"/"dy"(y/(log y + 1))`

= `((log y + 1) * 1 - y * "d"/"dy" (log y + 1))/(log y + 1)^2`

= `(log y + 1 - y * 1/2)/(log y + 1)^2`

= `logy/(log y + 1)^2`

We know that

`"dy"/"dx" = 1/("dx"/"dy")`

= `1/(logy/(log y + 1)^2`

= `(log y + 1)^2/logy`

Hence, `"dy"/"dx" = (log y + 1)^2/logy`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 60 | पृष्ठ १११
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×