Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
उत्तर
Given that: y = `x^tanx + sqrt((x^2 + 1)/2)`
Let u = `x^tanx` and v = `sqrt((x^2 + 1)/2)`
∴ y = u + v
Differentiating both sides w.r.t. x
`"dy"/"dx" = "du"/"dx" + "dv"/"dx"` .....(i)
Now taking u = `x^tanx`
Taking log on both sides log u = `log(x^tanx)`
log u = tan x . log x
Differentiating both sides w.r.t. x
`1/"u" * "du"/"dx" = "d"/"dx"(tan x * log x)`
⇒ `1/"u" * "du"/"dx" = tan x * "d"/"dx" (log x) + log x * "d"/"dx" (tan x)`
⇒ `1/"u" * "du"/"dx" = tan x * 1/x + log x * sec^2x`
⇒ `"du"/"dx" = "u"[tanx/x + log x * sec^2x]`
∴ `"du"/"dx" = x^tanx [tanx/x + log x sec^2x]`
Taking v = `sqrt((x^2 + 1)/2)`
⇒ v = `1/sqrt(2) sqrt(x^2 + 1)`
Differentiating both sides w.r.t. x
`"dv"/"dx" = 1/sqrt(2) * 1/(2sqrt(x^2 + 1)) * 2x`
= `x/(sqrt(2)sqrt(x^2 + 1))`
Putting the values of `"du"/"dx"` and `"dv"/"dx"` in equation (i)
`"dy"/"dx" = x^tanx [log x sec^2x + tanx/x] + x/(sqrt(2)sqrt(x^2 + 1))`
APPEARS IN
संबंधित प्रश्न
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
log (log x), x > 1
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is