हिंदी

Find dydxdydx, if y = xtanx+x2+12 - Mathematics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`

योग

उत्तर

Given that: y = `x^tanx + sqrt((x^2 + 1)/2)`

Let u = `x^tanx` and v = `sqrt((x^2 + 1)/2)`

∴ y = u + v

Differentiating both sides w.r.t. x

`"dy"/"dx" = "du"/"dx" + "dv"/"dx"`   .....(i)

Now taking u = `x^tanx`

Taking log on both sides log u = `log(x^tanx)`

log u = tan x . log x

Differentiating both sides w.r.t. x

`1/"u" * "du"/"dx" = "d"/"dx"(tan x * log x)`

⇒ `1/"u" * "du"/"dx" = tan x * "d"/"dx" (log x) + log x * "d"/"dx" (tan x)`

⇒ `1/"u" * "du"/"dx" = tan x * 1/x + log x * sec^2x`

⇒ `"du"/"dx" = "u"[tanx/x + log x * sec^2x]`

∴ `"du"/"dx" = x^tanx [tanx/x + log x sec^2x]`

Taking v = `sqrt((x^2 + 1)/2)`

⇒ v = `1/sqrt(2) sqrt(x^2 + 1)`

Differentiating both sides w.r.t. x

`"dv"/"dx" = 1/sqrt(2) * 1/(2sqrt(x^2 + 1)) * 2x`

= `x/(sqrt(2)sqrt(x^2 + 1))`

Putting the values of `"du"/"dx"` and `"dv"/"dx"` in equation (i)

`"dy"/"dx" = x^tanx [log x sec^2x + tanx/x] + x/(sqrt(2)sqrt(x^2 + 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 82 | पृष्ठ ११३

संबंधित प्रश्न

Differentiate 3x w.r.t. log3x


Differentiate the following w.r.t. x: 

`e^(sin^(-1) x)`


Differentiate the following w.r.t. x:

`e^x + e^(x^2) +... + e^(x^3)`


Differentiate the following w.r.t. x:

`sqrt(e^(sqrtx)), x > 0`


Differentiate the following w.r.t. x:

log (log x), x > 1


Differentiate the following w.r.t. x: 

`cos x/log x, x >0`


Differentiate the following w.r.t. x:

cos (log x + ex), x > 0


Differentiate w.r.t. x the function:

(log x)log x, x > 1


Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.


If xy - yx = ab, find `(dy)/(dx)`.


If `"x" = "e"^(cos2"t")  "and"  "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.


If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`


The derivative of log10x w.r.t. x is ______.


If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`


If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`


If `"y" = ("x" + sqrt(1 + "x"^2))^"n",  "then" (1 + "x"^2)  ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.


If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.


If `"x" = "a" ("cos"  theta + theta  "sin"  theta), "y = a" ("sin"  theta - theta  "cos"  theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.


If `"y"^2 = "ax"^2 + "bx + c", "then"  "d"/"dx" ("y"^3 "y"_"z") =` ____________.


If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then"  "dy"/"dx" =` ____________.


If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then"  "dy"/"dx"` is equal to ____________.


If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.


The domain of the function defined by f(x) = logx 10 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×