हिंदी

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines. - Mathematics

Advertisements
Advertisements

प्रश्न

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.

योग

उत्तर

sin (A + B) = sin A cos B + cos A sin B

Let A and B be functions of t.

Differentiating both sides with respect to t,

L.H.S. = `d/dx sin (A + B) = cos (A + B) ((dA)/dt + (dB)/dt)`

R.H.S. = `d/dt` (sin A cos B + cos A sin B)

`= cos A (dA)/dt cos B + sin A (- sin B) (dB)/dt + (- sin A) (dA)/dt sin B + cos A cos B (dB)/dt`

`= (cos A cos B - sin A sin B) (dA)/dt + (cos A cos B - sin A sin B) (dB)/dt`

`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`

`=> cos (A + B) ((dA)/dt + (dB)/dt)`

`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`

Hence, cos (A + B) = cos A cos B – sin A sin B

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.9 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.9 | Q 20 | पृष्ठ १९२

संबंधित प्रश्न

Differentiate 3x w.r.t. log3x


Differentiate the following w.r.t. x:

`e^x/sinx`


Differentiate the following w.r.t. x:

`e^(x^3)` 


Differentiate the following w.r.t. x: 

sin (tan–1 e–x)


Differentiate the following w.r.t. x:

`log(cos e^x)`


Differentiate the following w.r.t. x:

`sqrt(e^(sqrtx)), x > 0`


Differentiate the following w.r.t. x: 

`cos x/log x, x >0`


Differentiate the following w.r.t. x:

cos (log x + ex), x > 0


Differentiate w.r.t. x the function:

(log x)log x, x > 1


Differentiate w.r.t. x the function:

cos (a cos x + b sin x), for some constant a and b.


If xy - yx = ab, find `(dy)/(dx)`.


If `"x" = "e"^(cos2"t")  "and"  "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.


If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`


The derivative of log10x w.r.t. x is ______.


If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`


If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`


If `"y" = ("x" + sqrt(1 + "x"^2))^"n",  "then" (1 + "x"^2)  ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.


If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.


If `"x" = "a" ("cos"  theta + theta  "sin"  theta), "y = a" ("sin"  theta - theta  "cos"  theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.


If `"y"^2 = "ax"^2 + "bx + c", "then"  "d"/"dx" ("y"^3 "y"_"z") =` ____________.


If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then"  "dy"/"dx"` is equal to ____________.


If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.


The domain of the function defined by f(x) = logx 10 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×