Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
उत्तर
Let, sin `(tan^-1 e^(- x))`
Differentiating both sides with respect to x,
`dy/dx = d/dx sin(tan^-1 e^(-x))`
`= cos (tan^-1 e^-x) d/dx tan^-1 e^-x`
`= cos (tan^-1 e^-x) 1/(1 + (e^-x)^2) d/dx (e^-x)`
`= cos (tan^-1 e^-x) 1/(1 + e^(-2x)) (e^-x) d/dx (-x)`
`= cos (tan^-1 e^-x) e^-x/(1 + e^(-2x)) (-1)`
`= - (e^-x cos (tan^-1 e^-x))/(1 + e^(-2x))`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
`e^(x^3)`
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
log (log x), x > 1
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is