Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x:
`log(cos e^x)`
उत्तर
Let, y = log (cos `e^x`)
Differentiating both sides with respect to x,
`dy/dx= d/dx (cos e^x)`
`= 1/(cos e^x) d/dx (cos e^x)`
`= 1/(cos e^x) (- sin e^x) d/dx e^x `
`= - (sin e^x)/(cos e^x) * e^x`
`= - e^x tan e^x`
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
The derivative of log10x w.r.t. x is ______.
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then" "dy"/"dx"` is equal to ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is