Advertisements
Advertisements
Question
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
Solution
sin (A + B) = sin A cos B + cos A sin B
Let A and B be functions of t.
Differentiating both sides with respect to t,
L.H.S. = `d/dx sin (A + B) = cos (A + B) ((dA)/dt + (dB)/dt)`
R.H.S. = `d/dt` (sin A cos B + cos A sin B)
`= cos A (dA)/dt cos B + sin A (- sin B) (dB)/dt + (- sin A) (dA)/dt sin B + cos A cos B (dB)/dt`
`= (cos A cos B - sin A sin B) (dA)/dt + (cos A cos B - sin A sin B) (dB)/dt`
`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`
`=> cos (A + B) ((dA)/dt + (dB)/dt)`
`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`
Hence, cos (A + B) = cos A cos B – sin A sin B
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
`e^(x^3)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then" "dy"/"dx"` is equal to ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is