English

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines. - Mathematics

Advertisements
Advertisements

Question

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.

Sum

Solution

sin (A + B) = sin A cos B + cos A sin B

Let A and B be functions of t.

Differentiating both sides with respect to t,

L.H.S. = `d/dx sin (A + B) = cos (A + B) ((dA)/dt + (dB)/dt)`

R.H.S. = `d/dt` (sin A cos B + cos A sin B)

`= cos A (dA)/dt cos B + sin A (- sin B) (dB)/dt + (- sin A) (dA)/dt sin B + cos A cos B (dB)/dt`

`= (cos A cos B - sin A sin B) (dA)/dt + (cos A cos B - sin A sin B) (dB)/dt`

`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`

`=> cos (A + B) ((dA)/dt + (dB)/dt)`

`= (cos A cos B - sin A sin B)((dA)/dt + (dB)/dt)`

Hence, cos (A + B) = cos A cos B – sin A sin B

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.9 [Page 192]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.9 | Q 20 | Page 192

RELATED QUESTIONS

Differentiate the following w.r.t. x:

`e^x/sinx`


Differentiate the following w.r.t. x: 

`e^(sin^(-1) x)`


Differentiate the following w.r.t. x:

`e^(x^3)` 


Differentiate the following w.r.t. x: 

sin (tan–1 e–x)


Differentiate the following w.r.t. x:

`log(cos e^x)`


Differentiate the following w.r.t. x:

`e^x + e^(x^2) +... + e^(x^3)`


Differentiate the following w.r.t. x:

`sqrt(e^(sqrtx)), x > 0`


Differentiate the following w.r.t. x: 

`cos x/log x, x >0`


Differentiate w.r.t. x the function:

(log x)log x, x > 1


Differentiate w.r.t. x the function:

cos (a cos x + b sin x), for some constant a and b.


If xy - yx = ab, find `(dy)/(dx)`.


If `"x" = "e"^(cos2"t")  "and"  "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.


If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`


If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`


If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`


If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.


If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.


If `"x" = "a" ("cos"  theta + theta  "sin"  theta), "y = a" ("sin"  theta - theta  "cos"  theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.


If `"y"^2 = "ax"^2 + "bx + c", "then"  "d"/"dx" ("y"^3 "y"_"z") =` ____________.


If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then"  "dy"/"dx" =` ____________.


If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find"  "dy"/"dx"`


If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then"  "dy"/"dx"` is equal to ____________.


If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.


The domain of the function defined by f(x) = logx 10 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×