Advertisements
Advertisements
Question
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Solution
Let y = `e^x + e^(x^2) +... + e^(x^5)`
Differentiating both sides with respect to x,
`dy/dx = d/dx (e^x) + d/dx (e^(x^2)) = d/dx (e^(x^3)) + d/dx (e^(x^4)) + d/dx (e^(x^5))`
`= e^x + e^(x^2) d/dx (x^2) + e^(x^3) d/dx (x^3) + e^(x^4) d/dx (x^4) + e^(x^5) d/dx x^5 `
`= e^x + e^(x^2). 2 x + e^(x^3). 3x^2 + e^(x^4) .4x^3 + e^(x^5). 5x^4`
`= e^x + 2xe^(x^2) + 3x^2 e^(x^3) + 4x^3 e^(x^4) + 5x^4 e^(x^5)`
`=e^x (1 + 2xe^x + 3x^2 e^(x^2) + 4x^3 e^(x^3) + 5x^4 e^(x^4))`
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
`e^(x^3)`
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
log (log x), x > 1
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is