Advertisements
Advertisements
Question
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
Solution
Given that: x = `"e"^(x/y)`
Taking log on both the sides,
log x = `log "e"^(x/y)`
⇒ log x = `x/y log "e"`
⇒ log x = `x/y` ....[∵ log e = 1] ....(i)
Differentiating both sides w.r.t. x
`"d"/"dx" log x = "d"/"dx"(x/y)`
⇒ `1/x = (y*1 - x* "dy"/"dx")/y^2`
⇒ y2 = `xy - x^2 * "dy"/"dx"`
⇒ `x^2 * "dy"/"dx"` = xy – y2
⇒ `"dy"/"dx" = (y(x - y))/x^2`
⇒ `"dy"/"d" = y/x * ((x - y)/x)`
⇒ `"dy"/"dx" = 1/logx * ((x - y)/x)` .....[∵ log x = `x/y` from equation (i)]
Hence, `"dy"/"dx" = (x - y)/(xlogx).
APPEARS IN
RELATED QUESTIONS
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.