Advertisements
Advertisements
Question
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
Solution
Given that: yx = ey – x
Taking log on both sides log yx = log ey – x
⇒ x log y = (y – x)log e
⇒ x log y = y – x .....[∵ log e = 1]
⇒ x log y + x = y
⇒ x(log y + 1) = y
⇒ x = `y/(log y + 1)`
Differentiating both sides w.r.t. y
`"dx"/"dy" = "d"/"dy"(y/(log y + 1))`
= `((log y + 1) * 1 - y * "d"/"dy" (log y + 1))/(log y + 1)^2`
= `(log y + 1 - y * 1/2)/(log y + 1)^2`
= `logy/(log y + 1)^2`
We know that
`"dy"/"dx" = 1/("dx"/"dy")`
= `1/(logy/(log y + 1)^2`
= `(log y + 1)^2/logy`
Hence, `"dy"/"dx" = (log y + 1)^2/logy`.
APPEARS IN
RELATED QUESTIONS
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(sin^(-1) x)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.