English

If yx = ey – x, prove that dydxdydx=(1+logy)2logy - Mathematics

Advertisements
Advertisements

Question

If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`

Sum

Solution

Given that: yx = ey – x 

Taking log on both sides log yx = log ey – x 

⇒ x log y = (y – x)log e

⇒ x log y = y – x   .....[∵ log e = 1]

⇒ x log y + x = y

⇒ x(log y + 1) = y

⇒ x = `y/(log y + 1)`

Differentiating both sides w.r.t. y

`"dx"/"dy" = "d"/"dy"(y/(log y + 1))`

= `((log y + 1) * 1 - y * "d"/"dy" (log y + 1))/(log y + 1)^2`

= `(log y + 1 - y * 1/2)/(log y + 1)^2`

= `logy/(log y + 1)^2`

We know that

`"dy"/"dx" = 1/("dx"/"dy")`

= `1/(logy/(log y + 1)^2`

= `(log y + 1)^2/logy`

Hence, `"dy"/"dx" = (log y + 1)^2/logy`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 111]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 60 | Page 111

RELATED QUESTIONS

Differentiate the following w.r.t. x:

`e^x/sinx`


Differentiate the following w.r.t. x: 

`e^(sin^(-1) x)`


Differentiate the following w.r.t. x: 

sin (tan–1 e–x)


Differentiate the following w.r.t. x:

`log(cos e^x)`


Differentiate the following w.r.t. x:

`e^x + e^(x^2) +... + e^(x^3)`


Differentiate the following w.r.t. x:

`sqrt(e^(sqrtx)), x > 0`


Differentiate the following w.r.t. x: 

`cos x/log x, x >0`


Differentiate the following w.r.t. x:

cos (log x + ex), x > 0


 If `"y" ="x"^"x" , "find"  "dy"/"dx"`.


If xy - yx = ab, find `(dy)/(dx)`.


If `"x" = "e"^(cos2"t")  "and"  "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.


If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`


The derivative of log10x w.r.t. x is ______.


If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`


If `"y" = ("x" + sqrt(1 + "x"^2))^"n",  "then" (1 + "x"^2)  ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.


If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.


If `"x" = "a" ("cos"  theta + theta  "sin"  theta), "y = a" ("sin"  theta - theta  "cos"  theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.


If `"y"^2 = "ax"^2 + "bx + c", "then"  "d"/"dx" ("y"^3 "y"_"z") =` ____________.


If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then"  "dy"/"dx" =` ____________.


If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find"  "dy"/"dx"`


If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×