Advertisements
Advertisements
Question
If xy - yx = ab, find `(dy)/(dx)`.
Solution
The given function is xy - yx = ab
Let xy = u and yx = v
Then , the function becomes u - v = ab
`(d"u")/(d"x") - (d"v")/(d"x") = 0` .....(1)
u = xy
⇒ log u = log(xy)
⇒ log u = y log x
Differentiating both sides with respect to x, we obtain
`(1)/("u") (d"u")/(d"x") = log "x" (d"y")/(d"x") + "y". (d)/(d"x") (log "x")`
⇒ `(d"u")/(d"x") = [ log "x" (d"y")/(d"x") + "y" .(1)/("x")]`
⇒ `(d"u")/(d"x") = "x"^"y" (log "x" (d"y")/(d"x") + ("y")/("x"))` ...(2)
`"v" = "y"^"x"`
⇒ `log "v" = log ("y"^"x")`
⇒ `log "v" = "x" log "y"`
Differentiating both sides with respect to x, we obtain
`(1)/("v").(d"v")/(d"x") = log "y".(d)/(d"x") ("x") + "x". (d)/(d"x") (log "y")`
⇒ `(d"v")/(d"x") = "v" (log "y". 1 + "x".(1)/("y"). (d"y")/(d"x"))`
⇒ `(d"v")/(d"x") = "y"^"x" (log "y" + ("x")/("y") (d"y")/(d"x"))` ...(3)
From (1), (2), and (3), we obtain
`"x"^"y" (log "x"(d"y")/(d"x") + ("y")/("x")) - "y"^"x" (log "y" + ("x")/("y") (d"y")/(d"x")) = 0`
⇒ `"x"^"y" log "x" (d"y")/(d"x") - "xy"^("x"-1) (d"y")/(d"x") + "x"^("y"-1) "y"-"y"^"x" log"y" = 0`
⇒ `("x"^"y" log "x" - "xy"^("x"-1)) (d"y")/(d"x") = "y"^"x" log "y" - "x"^("y"-1) "y"`
⇒ `(d"y")/(d"x") = ("y"^"x" log "y" - "x"^("y" -1) "y")/(("x"^"y" log "x" - "xy"^("x"-1))`
RELATED QUESTIONS
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^(x^3)`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
`log(cos e^x)`
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then" "dy"/"dx"` is equal to ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.