Advertisements
Advertisements
Question
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
Solution
Given that: ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.
Differentiating both sides w.r.t. x
`"d"/"dx" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dx" (0)`
⇒ `"a"*2x + 2"h"(x * "dy"/"dx" + y*1) + "b"*2*y* "dy"/"dx" + 2"g"*1 + 2"f"* "dy"/"dx" + 0` = 0
⇒ `2"a"x + 2"h"x * "dy"/"dx" + 2"h"y + 2"b"y * "dy"/"dx" + 2"g" + 2"f" * "dy"/"dx"` = 0
⇒ `2"h"x * "dy"/"dx" + 2"b"y "dy"/"dx" + 2"f" "dy"/"dx"` = – 2ax – 2hy – 2g
⇒ `(2"h"x + 2"b"y + 2"f") "dy"/"dx"` = – 2(ax + hy + g)
⇒ `2("h"x + "b"y + "f") "dy"/"dx"` = = – 2(ax + hy + g)
⇒ `"dy"/"dx" = (-2("a"x + "h"y + "g"))/(2("h"x + "b"y + "f"))`
⇒ `"dy"/"dx" = (-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))`
Now, differentiating the given equation w.r.t. y.
`"d"/"dy" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dy"(0)`
⇒ `2"a"x* "dx"/"dy" + 2"h" (y * "dx"/"dy" + x*1) + 2"b"y + 2"g" * "dx"/"dy" + 2"f" * 1 + 0` = 0
⇒ `2"a"x * "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"h"x + 2"b"y + 2"g" * "dx"/"dy" + 2"f"` = 0
⇒ `2"a"x "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"g" * "dx"/"dy"` = – 2hx – 2by – 2f
⇒ `(2"a"x + 2"h"y + 2"g") "dx"/"dy"` = = – 2hx – 2by – 2f
⇒ `"dx"/"dy" = (-2"h"x - 2"b"y - 2"f")/(2"a"x + 2"h"y + 2"g")`
⇒ `"dx"/"dy" = (-2("h"x + "b"y + "f"))/(2("a"x + "h"y + "g"))`
⇒ `"dx"/"dy" = (-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))`
∴ `"dy"/"dx" * "dx"/"dy" = [(-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))][(-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))]` = 1
Hence, `"dy"/"dx" * "dx"/"dy"` = 1.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
ex sin 5x
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`