मराठी

If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that dydxdxdydydx⋅dxdy = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 

बेरीज

उत्तर

Given that: ax2 + 2hxy + by2 + 2gx + 2fy + c = 0.

Differentiating both sides w.r.t. x

`"d"/"dx" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dx" (0)`

⇒ `"a"*2x + 2"h"(x * "dy"/"dx" + y*1) + "b"*2*y* "dy"/"dx" + 2"g"*1 + 2"f"* "dy"/"dx" + 0` = 0

⇒ `2"a"x + 2"h"x * "dy"/"dx" + 2"h"y + 2"b"y * "dy"/"dx" + 2"g" + 2"f" * "dy"/"dx"` = 0

⇒ `2"h"x * "dy"/"dx" + 2"b"y "dy"/"dx" + 2"f" "dy"/"dx"` = – 2ax – 2hy – 2g

⇒ `(2"h"x + 2"b"y + 2"f") "dy"/"dx"` = – 2(ax + hy + g)

⇒ `2("h"x + "b"y + "f") "dy"/"dx"` = = – 2(ax + hy + g)

⇒ `"dy"/"dx" = (-2("a"x + "h"y + "g"))/(2("h"x + "b"y + "f"))`

⇒ `"dy"/"dx" = (-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))`

Now, differentiating the given equation w.r.t. y.

`"d"/"dy" ("a"x^2 + 2"h"xy + "b"y^2 + 2"g"x + 2"f"y + "c") = "d"/"dy"(0)`

⇒ `2"a"x* "dx"/"dy" + 2"h" (y * "dx"/"dy" + x*1) + 2"b"y + 2"g" * "dx"/"dy" + 2"f" * 1 + 0` = 0

⇒ `2"a"x * "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"h"x + 2"b"y + 2"g" * "dx"/"dy" + 2"f"` = 0

⇒ `2"a"x "dx"/"dy" + 2"h"y * "dx"/"dy" + 2"g" * "dx"/"dy"` = – 2hx – 2by – 2f

⇒ `(2"a"x + 2"h"y + 2"g") "dx"/"dy"` = = – 2hx – 2by – 2f

⇒ `"dx"/"dy" = (-2"h"x - 2"b"y - 2"f")/(2"a"x + 2"h"y + 2"g")`

⇒ `"dx"/"dy" = (-2("h"x + "b"y + "f"))/(2("a"x + "h"y + "g"))`

⇒ `"dx"/"dy" = (-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))`

∴ `"dy"/"dx" * "dx"/"dy" = [(-("a"x + "h"y + "g"))/(("h"x + "b"y + "f"))][(-("h"x + "b"y + "f"))/(("a"x + "h"y + "g"))]` = 1

Hence, `"dy"/"dx" * "dx"/"dy"` = 1.

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 58 | पृष्ठ १११

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×