Advertisements
Advertisements
प्रश्न
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
उत्तर
y = `"e"^((2"x" + 1))`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "e"^((2"x" + 1)) * "d"/"dx" (2"x" + 1)`
`"dy"/"dx" = "e"^((2"x" + 1)) * (2 + 0)`
`"dy"/"dx" = 2"e"^((2"x" + 1))`
Again, differentiating both sides w.r.t. x, we get
`("d"^2"y")/"dx"^2 = 2 * "d"/"dx" "e"^((2"x" + 1))`
`= 2"e"^((2"x" + 1)) * "d"/"dx" (2"x" + 1)`
`= 2"e"^((2"x" + 1)) * (2 + 0)`
∴ `("d"^2"y")/"dx"^2 = 4"e"^((2"x" + 1))`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
tan–1 x
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`