Advertisements
Advertisements
प्रश्न
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
उत्तर
Given, y = 5 cos x - 3 sin x
Differentiating both sides with respect to x,
`dy/dx = 5 d/dx cos x - 3 d/dx sin x`
= 5 (- sin x) - 3 cos x = - 5 sin x - 3 cos x
Differentiating both sides again with respect to x,
`(d^2 y)/dx= - 5 d/dx sin x - 3 d/dx cos x`
= - 5 cos x - 3 (- sin x) = 3 sin x - 5 cos x
Hence, `(d^2 y)/dx^2 + y ` = 3 sin x - 5 cos x + 5 cos x - 3 sin x ...(On substituting the value of y)
= 0
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
e6x cos 3x
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
(x2 + y2)2 = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`