मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find d2ydx2, if y = x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`

बेरीज

उत्तर

y = `sqrt"x"`

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = 1/(2sqrt"x")`

∴ `"dy"/"dx" = 1/2 "x"^(-1/2)`

Again, differentiating both sides w.r.t. x , we get

`("d"^2"y")/"dx"^2 = 1/2 * "d"/"dx"("x"^(-1/2))`

`= 1/2 (- 1/2)* "x"^(- 3/2)`

∴ `("d"^2"y")/"dx"^2 = (-1)/4 "x"^(-3/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.6 [पृष्ठ ९८]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


`sin xy + x/y` = x2 – y


sec(x + y) = xy


(x2 + y2)2 = xy


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


Derivative of cot x° with respect to x is ____________.


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×