मराठी

Find the second order derivative of the function. x20 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the second order derivative of the function.

`x^20`

बेरीज

उत्तर

Let, y = x20

Differentiating both sides with respect to x,

`dy/dx = d/dx x^20`

`= 20x^(20 - 1)`

`= 20x^19`

Differentiating both sides again with respect to x,

`(d^2 y)/dx^2 = 20  d/dx x^19`

`= 20 xx 19x^(19 - 1)`

`= 380 x^18`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.7 [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.7 | Q 183 | पृष्ठ १८३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

log (log x)


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


sec(x + y) = xy


tan–1(x2 + y2) = a


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×