English

Find the second order derivative of the function. x20 - Mathematics

Advertisements
Advertisements

Question

Find the second order derivative of the function.

`x^20`

Sum

Solution

Let, y = x20

Differentiating both sides with respect to x,

`dy/dx = d/dx x^20`

`= 20x^(20 - 1)`

`= 20x^19`

Differentiating both sides again with respect to x,

`(d^2 y)/dx^2 = 20  d/dx x^19`

`= 20 xx 19x^(19 - 1)`

`= 380 x^18`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.7 [Page 183]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.7 | Q 183 | Page 183

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

ex sin 5x


If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


sec(x + y) = xy


(x2 + y2)2 = xy


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×