English

If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2 - Mathematics

Advertisements
Advertisements

Question

If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2

Sum

Solution

Let y = (tan-1 x)2

Differentiating (1) w.r.t.x, we get,

`dy/dx = 2 tan^-1 x . 1/(1 + x^2)`

`(d^2y)/dx^2 = 2 [tan^-1 x (({1 + x^2} . 0 - 2x))/(1 + x^2)^2 + 1/ (1 + x^2). 1/ (1 + x^2)]`

`= 2 [(-2x tan^-1 x)/ (1 +x^2)^2 + 1/ (1 + x^2)^2]`

`= 2 [(-2x tan^-1 x + 1)/ (1 + x^2)^2]`

Now,

`(x^2 + 1)^2 (d^2y)/dx^2 + 2x (x^2 + 1) dy/dx`

`= (x^2 + 1)^2 . 2 [(-2x tan^-1x + 1)/ (1 + x^2)^2] + 2x (x^2 + 1). 2tan ^-1 x. 1/ (1 + x^2)`

`= -4x tan^-1 x + 2 + 4x tan^-1 x = 2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.7 [Page 184]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.7 | Q 17 | Page 184

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

tan–1 x


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


`sin xy + x/y` = x2 – y


sec(x + y) = xy


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×