Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x:
`e^x + e^(x^2) +... + e^(x^3)`
उत्तर
Let y = `e^x + e^(x^2) +... + e^(x^5)`
Differentiating both sides with respect to x,
`dy/dx = d/dx (e^x) + d/dx (e^(x^2)) = d/dx (e^(x^3)) + d/dx (e^(x^4)) + d/dx (e^(x^5))`
`= e^x + e^(x^2) d/dx (x^2) + e^(x^3) d/dx (x^3) + e^(x^4) d/dx (x^4) + e^(x^5) d/dx x^5 `
`= e^x + e^(x^2). 2 x + e^(x^3). 3x^2 + e^(x^4) .4x^3 + e^(x^5). 5x^4`
`= e^x + 2xe^(x^2) + 3x^2 e^(x^3) + 4x^3 e^(x^4) + 5x^4 e^(x^5)`
`=e^x (1 + 2xe^x + 3x^2 e^(x^2) + 4x^3 e^(x^3) + 5x^4 e^(x^4))`
APPEARS IN
संबंधित प्रश्न
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`e^(x^3)`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
log (log x), x > 1
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
(log x)log x, x > 1
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If `"xy"^2 = "ax"^2 + "bxy" + "y"^2, "then find" "dy"/"dx"`
If `"y = tan"^-1 [("sin x + cos x")/("cos x - sin x")], "then" "dy"/"dx"` is equal to ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is