Advertisements
Advertisements
प्रश्न
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
उत्तर
Here `"x" = "e"^(cos2"t") and "y"="e"^(sin2"t")`
⇒ `log_"e" "x" = log_"e" ("e"^(cos2"t")) and log_"e" "y" = log_"e"("e"^(sin2"t"))`
⇒ `log_"e" "x" = cos 2"t" log_"e" ("e") and log_"e" "y"=sin 2"t" log_"e" ("e") ...["As log"_"e" ("e") = 1]`
∴ `log_"e" "x" = cos 2"t" and log_"e" "y" = sin 2"t"`
Squaring and then adding these two equations,
`(log_"e" "x")^2 + (log_"e" "y")^2 = cos^2 2"t" + sin^2 2"t"`
⇒ `(log_"e" "x")^2 + (log_"e" "y")^2 = 1`
⇒ `2(log_"e" "x") xx (1)/("x") + 2(log_"e" "y") xx (1)/("y") xx (d"y")/(d"x") = 0`
∴ `(d)/(d"x") [(log_"e" "x")^2 + (log_"e" "y")^2] = (d)/(d"x") ...(1)`
⇒ `(log_"e" "y")/("y") xx (d"y")/(d"x") = - (log_"e" "x")/("x")`
∴ `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`
APPEARS IN
संबंधित प्रश्न
Differentiate 3x w.r.t. log3x
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
`sqrt(e^(sqrtx)), x > 0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If xy = ex–y, prove that `("d"y)/("d"x) = logx/(1 + logx)^2`
The derivative of log10x w.r.t. x is ______.
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"y = a"^"x", "b"^(2"x" -1), "then" ("d"^2"y")/"dx"^2` is ____________.
If `"y" = (varphi "n x")/"x",` then the value of y'' (e) is ____________.
If `"y"^2 = "ax"^2 + "bx + c", "then" "d"/"dx" ("y"^3 "y"_"z") =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.
The domain of the function defined by f(x) = logx 10 is