Advertisements
Advertisements
प्रश्न
If y = `(cos x)^((cos x)^((cosx)....oo)`, show that `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`
उत्तर
Given that y = `(cos x)^((cos x)^((cosx)....oo)`,
⇒ y = (cos x)y .....`[y = (cos x)^((cos x)^((cosx)....oo))]`
Taking log on both sides log y = y.log(cos x)
Differentiating both sides w.r.t. x
`1/y * "dy"/"dx" = y * "d"/"dx" log (cos x ) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y * 1/cosx * "d"/"dx" (cos x) + log(cos x) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" = y* 1/cosx * (- sin x) + log(cosx) * "dy"/"dx"`
⇒ `1/y * "dy"/"dx" - log(cos x) "dy"/"dx"` = – y tan x
⇒ `[1/y - log (cosx)] "dy"/"dx"` = – y tan x
⇒ `"dy"/"dx" = (- y tanx)/(1/y - log(cosx))`
= `(y^2 tanx)/(y log cos x - 1)`
Hence, `"dy"/"dx" = (y^2 tanx)/(y log cos x - 1)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Differentiate the following w.r.t. x:
`e^x/sinx`
Differentiate the following w.r.t. x:
sin (tan–1 e–x)
Differentiate the following w.r.t. x:
log (log x), x > 1
Differentiate the following w.r.t. x:
`cos x/log x, x >0`
Differentiate the following w.r.t. x:
cos (log x + ex), x > 0
Differentiate w.r.t. x the function:
(log x)log x, x > 1
Differentiate w.r.t. x the function:
cos (a cos x + b sin x), for some constant a and b.
Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.
If `"y" ="x"^"x" , "find" "dy"/"dx"`.
If xy - yx = ab, find `(dy)/(dx)`.
If `"x" = "e"^(cos2"t") "and" "y" = "e"^(sin2"t")`, prove that `(d"y")/(d"x") = - ("y"log"x")/("x"log"y")`.
The derivative of log10x w.r.t. x is ______.
If x = `"e"^(x/y)`, prove that `"dy"/"dx" = (x - y)/(xlogx)`
If yx = ey – x, prove that `"dy"/"dx" = (1 + log y)^2/logy`
Find `"dy"/"dx"`, if y = `x^tanx + sqrt((x^2 + 1)/2)`
If `"y" = ("x" + sqrt(1 + "x"^2))^"n", "then" (1 + "x"^2) ("d"^2 "y")/"dx"^2 + "x" ("dy")/("dx")` is ____________.
If `"x" = "a" ("cos" theta + theta "sin" theta), "y = a" ("sin" theta - theta "cos" theta), "then" ("d"^2 "y")/("dx"^2) =` ____________.
If `sqrt(("x + y")) + sqrt (("y - x")) = "a", "then" "dy"/"dx" =` ____________.
If f(x) = `"log"_("x"^2) ("log x")`, then f(e) is ____________.