Advertisements
Advertisements
प्रश्न
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
उत्तर
Given that: x sin (a + y) + sin a cos (a + y) = 0
⇒ x sin (a + y) = – sin a cos (a + y)
⇒ x = `(-sin"a" * cos("a" + y))/(sin ("a" + y))`
⇒ x = – sin a.cot (a + y)
Differentiating both sides w.r.t. y
⇒ `"dx"/"dy" = - sin"a"*"d"/"dy" cot("a" + y)`
⇒ `"dx"/"dy" = -sin"a"[-"cosec"^2("a" + y)`
⇒ `"dx"/"dy" = sin"a"/(sin^2("a" + y))`
∴ `"dy"/"dx" = 1/("dx"/"dy")`
= `1/(sin"a"/(sin^2("a" + y))`
Hence, `"dy"/"dx" = (sin^2("a" + y))/sin"a"`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`