Advertisements
Advertisements
प्रश्न
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
उत्तर
Given that: y = tan–1x
⇒ x = tan y
Differentiating both sides w.r.t. y
`"dx"/"dy"` = sec2y
⇒ `"dy"/'dx" = 1/(sec^2y)` = cos2y
Again differentiating both sides w.r.t. x
⇒ `"d"/"dx"("dy"/"dx") = "d"/"dx"(cos^2y)`
⇒ `("d"^2y)/("dx"^2) = 2cos y * "d"/"dx" (cos y)`
⇒ `("d"^2y)/("dx"^2) = 2cos y(- siny) * "dy"/"dx"`
⇒ `("d"^2y)/("dx"^2) = - 2sin y cos y * cos^2 y`
∴ `("d"^2y)/("dx"^2)` = – 2 sin y cos3y
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
log (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
tan–1(x2 + y2) = a
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`