Advertisements
Advertisements
प्रश्न
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
पर्याय
36
36 − 36 cos θ
18 − 18 cos θ
18 + 18 cos θ
उत्तर
(c) 18 − 18 cosθ
We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{3}\frac{y}{2} - \sqrt{1 - \frac{x^2}{9}}\sqrt{1 - \frac{y^2}{4}} \right) = \frac{\theta}{2}\]
\[ \Rightarrow \frac{xy}{6} - \sqrt{\frac{9 - x^2}{9}}\sqrt{\frac{4 - y^2}{4}} = \cos\frac{\theta}{2}\]
\[ \Rightarrow xy - 6\cos\frac{\theta}{2} = \sqrt{9 - x^2}\sqrt{4 - y^2}\]
Squaring both the sides, we get
\[x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = \left( 9 - x^2 \right)\left( 4 - y^2 \right)\]
\[ \Rightarrow x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = 36 - 9 y^2 - 4 x^2 + x^2 y^2 \]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36 - 36 \cos^2 \frac{\theta}{2}\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36\left\{ 1 - \left( \frac{\cos\theta + 1}{2} \right) \right\} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 18 - 18\cos\theta\]
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the domain of `sec^(-1) x-tan^(-1)x`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.