मराठी

If Cos − 1 X 3 + Cos − 1 Y 2 = θ 2 , Then 4 X 2 − 12 X Y Cos θ 2 + 9 Y 2 = (A) 36 (B) 36 − 36 Cos θ (C) 18 − 18 Cos θ (D) 18 + 18 Cos θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]

पर्याय

  • 36

  • 36 − 36 cos θ

  • 18 − 18 cos θ

  • 18 + 18 cos θ

MCQ

उत्तर

(c) 18 − 18 cosθ

We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{3}\frac{y}{2} - \sqrt{1 - \frac{x^2}{9}}\sqrt{1 - \frac{y^2}{4}} \right) = \frac{\theta}{2}\]
\[ \Rightarrow \frac{xy}{6} - \sqrt{\frac{9 - x^2}{9}}\sqrt{\frac{4 - y^2}{4}} = \cos\frac{\theta}{2}\]
\[ \Rightarrow xy - 6\cos\frac{\theta}{2} = \sqrt{9 - x^2}\sqrt{4 - y^2}\]
Squaring both the sides, we get
\[x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = \left( 9 - x^2 \right)\left( 4 - y^2 \right)\]
\[ \Rightarrow x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = 36 - 9 y^2 - 4 x^2 + x^2 y^2 \]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36 - 36 \cos^2 \frac{\theta}{2}\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36\left\{ 1 - \left( \frac{\cos\theta + 1}{2} \right) \right\} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 18 - 18\cos\theta\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 13 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×