English

Prove That: `Tan^-1 (2ab)/(A^2-b^2)+Tan^-1 (2xy)/(X^2-y^2)=Tan^-1 (2alphabeta)/(Alpha^2-beta^2),` Where `Alpha=Ax-by And Beta=Ay+Bx.` - Mathematics

Advertisements
Advertisements

Question

Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`

Solution

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy)),xy>1`

`thereforetan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1(((2ab)/(a^2-b^2)+(2xy)/(x^2-y^2))/(1-(2ab)/(a^2-b^2)  (2xy)/(x^2-y^2)))`

`=tan^-1(((2(abx^2-aby^2+xya^2-xyb^2))/((a^2-b^2)(x^2-y^2)))/((a^2x^2-a^2y^2-x^2b^2+y^2b^2-4abxy)/((a^2-b^2)(x^2-y^2))))`

`=tan^-1((2(abx^2-aby^2+xya^2-xyb^2))/(a^2x^2-a^2y^2-x^2b^2+y^2b^2-2abxy))`

`=tan^-1((2(ax-by)(ay+bx))/((ax-by)^2-(ay+bx)^2))`

`=tan^-1((2alphabeta)/(alpha^2-beta^2))`    `[because alpha=ax-by  and  beta = ay+bx]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 10 | Page 116

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin (cot−1 x).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of sin1 (sin 1550°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of cos−1 (cos 6).


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×