English

If `Sin^-1 (2a)/(1+A^2)-cos^-1 (1-b^2)/(1+B^2)=Tan^-1 (2x)/(1-x^2)`, Then Prove That `X=(A-b)/(1+Ab)` - Mathematics

Advertisements
Advertisements

Question

If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`

Sum

Solution

Let: a = tan m 
      b = tan n 
      x = tan y

Now,

`sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`

`=>sin^-1  (2tanm)/(1+tan^2m)-cos^-1  (1-tan^2n)/(1+tan^2n)=tan^-1  (2tany)/(1-tan^2y)`

`=>sin^-1(sin2m)-cos^-1(cos2n)=tan^-1(tan2y)`      `[becausesin2x=(2tanx)/(1+tan^2x)andcos2x=(1-tan^2x)/(1+tan^2x)]`

`=>2m-2n=2y`

`=>m-n=y`

`=>tan^-1a-tan^-1b=tan^-1x`      `[becausea=tanm,b=tannandx=tany]`

 

`=>tan^-1  (a-b)/(1+ab)=tan^-1x`      `[becausetan^-1x-tan^-1y=tan^-1  (x-y)/(1+xy)]``=>(a-b)/(1+ab)=x`

`therefore(a-b)/(1+ab)=x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 3 | Page 115

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×