English

Find the Value of Cos − 1 ( Cos 13 π 6 ) - Mathematics

Advertisements
Advertisements

Question

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]

Solution

\[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right) = \cos^{- 1} \left[ \cos\left( 2\pi + \frac{\pi}{6} \right) \right]\]
\[ = \cos^{- 1} \left[ \cos\left( \frac{\pi}{6} \right) \right]\]
\[ = \frac{\pi}{6}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 59 | Page 119

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`tan{cos^-1(-7/25)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the range of tan−1 x.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 (cos 6).


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×