English

Find the Value of X, If Tan Sec − 1 ( 1 X ) = Sin ( Tan − 1 2 ) , X > 0 . - Mathematics

Advertisements
Advertisements

Question

Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.

Sum

Solution

Let sec-1 `(1/x) = theta`

` ⇒ sec theta = 1/x`

⇒ cos θ = x 

⇒ tan ` (sec^(-1) (1/x)) = tan theta = sqrt(1 -x^2 ) /x `                ...(1) 

Now consider, 

sin ( tan -1 2 )

Let tan-1 2 = Φ

 tan Φ = 2 

sin ( tan-1 2) = sin Φ = `2/sqrt(5) `            ...(ii) 

From (i) and (ii)

`sqrt(1- x^2 )/x = 2/sqrt(5)`

5(1 - x) = 4x

`x = +- sqrt(5)/3 " but " x > 0 ⇒ x = sqrt(5)/3`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


`sin^-1(sin4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the range of tan−1 x.


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×