English

If Ey ( X +1) = 1, Then Show that D 2 Y D X 2 = ( D Y D X ) 2 . - Mathematics

Advertisements
Advertisements

Question

If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`

Sum

Solution

We have, 

ey ( x +1)  = 1

⇒ ey = `1/(x + 1)` 

⇒ log `e^y = log (1/(x+1))`

⇒ y = - log (x + 1) 

` ⇒ (dy)/(dx) = - 1/ (x + 1) and (d^2 y) /(dx^2) = 1/((x + 1)^2)`

` ⇒  (d^2 y)/(dx^2) = ((dy)/(dx))^2`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/3/3

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = log [cos(x5)] then find `("d"y)/("d"x)`


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


Evaluate:

`int log x dx`


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×