English

Differentiate the function with respect to x. (logx)cosx - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

`(log x)^(cos x)`

Sum

Solution

Let, y = `(log x)^(cos x)`

Taking logarithm of both sides,

log y = log (log x)cos x

= cos x log (log x),           ...[∵ log mn = n log m]

Differentiating both sides with respect to x,

`1/y dy/dx = cos x d/dx log (log x) + log (log x) d/dx cos x`

`= cos x * 1/(log x) d/dx (log x) + log (log x) (- sin x)`

`= cos x * 1/(log x) * 1/x - sin x log (log x)`

`= - sin x log (log x) + (cos x)/(x log x)`

`therefore dy/dx = y [- sin x log (log x) + (cos x)/(x log x)]`

`= (log x)^(cos x) [- sin x log (log x) + (cos x)/(x log x)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 3 | Page 178

RELATED QUESTIONS

Differentiate the following function with respect to x: `(log x)^x+x^(logx)`


Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx` for the function given in the question:

(cos x)y = (cos y)x


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Evaluate 
`int  1/(16 - 9x^2) dx`


Find `dy/dx` if y = x+ 5x


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


Find the nth derivative of the following : log (ax + b)


If f(x) = logx (log x) then f'(e) is ______


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


lf y = `2^(x^(2^(x^(...∞))))`, then x(1 - y logx logy)`dy/dx` = ______  


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


`log (x + sqrt(x^2 + "a"))`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×