Advertisements
Advertisements
Question
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
Solution
`"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)`
Taking logarithm of both the sides , we get
`5/3 "log x" + 2/3 "log y" = 7/3 "log (x + y)"`
Differentiating both sides w.r.t. x,
`5/3 . 1/"x" + 2/3 . 1/"y" "dy"/"dx" = 7/3 . 1/("x + y") [1 + "dy"/"dx"]`
`therefore 2/"3y" "dy"/"dx" - 7/(3 ("x + y")) "dy"/"dx" = 7/(3 ("x + y")) - 5/"3x"`
`therefore [2/"3y" - 7/(3 ("x + y"))] "dy"/"dx" = (7"x" - 5("x + y"))/("3x"("x + y"))`
`therefore [(2("x + y") - "7y")/("3y" ("x + y"))] "dy"/"dx" = (7"x" - 5("x + y"))/("3x"("x + y"))`
`therefore ("2x" - "5y")/"y" "dy"/"dx" = (2"x" - 5"y")/"x"`
`therefore "dy"/"dx" = "y"/"x"`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
Differentiate 3x w.r.t. logx3.
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
Find the derivative of `y = log x + 1/x` with respect to x.