English

If xy = ex–y, then show that dydxdydx=logx(1+logx)2. - Mathematics and Statistics

Advertisements
Advertisements

Question

If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.

Sum

Solution

xy = ex–y  

∴ log xy = log ex-y    

∴ y log x = (x – y) log e

∴ y log x = x – y     ...[∵ log e = 1]

∴ y + y log x = x        ∴ y(1 + log x) = x

∴ y = `x/(1 + log x)`

∴ `"dy"/"dx" = "d"/"dx"(x/(1 + log x))`

= `((1 + log x)."d"/"dx"(x) - x"d"/"dx"(1 + log x))/(1 + log x)^2`

= `((1 + log x).1 - x(0 + 1/x))/(1 + logx)^2`

= `(1 + logx - 1)/(1 + log x)^2`

= `log x/(1 + log x)^2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


Find `"dy"/"dx"` if y = xx + 5x


If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.


Differentiate 3x w.r.t. logx3.


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


Derivative of loge2 (logx) with respect to x is _______.


If y = `{f(x)}^{phi(x)}`, then `dy/dx` is ______ 


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


Derivative of `log_6`x with respect 6x to is ______


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×