English

If y = log[42x(x2+52x3-4)32], find dydx - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = log[42x(x2+52x3-4)32], find dydx

Sum

Solution

y = log[42x(x2+52x3-4)32]

= log42x+log(x2+52x3-4)32

= 2xlog4+32[log(x2+5)2x3-4]

= 2xlog4+32[log(x2+5)-log23-4]

= 2xlog4+32[log(x2+5)-34log(2x3-4)]

Differentiating w. r. t. x, we get

dydx=ddx[2xlog4+32log(x2+5)-34log(2x3-4)]

= 2log4ddx(x)+32ddx[log(x2+5)]-34ddx[log(2x3-4)]

= 2log41+31x2+5ddx(x2+5)-3412x3-4ddx(2x3-4)

= 2log4+321x2+52x-3412x3-46x2

dydx=2log4+3xx2+5-9x22(2x3-4)

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - Short Answers II

RELATED QUESTIONS

Differentiate the following function with respect to x(logx)x+xlogx


Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

(x+1x)x+x(1+1x)


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

(xcosx)x+(xsinx)1x


if xmyn=(x+y)m+n, prove that d2ydx2=0


If y=sin-1x+cos-1x,find dydx


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Find d2ydx2 , if y = log x


xy = ex-y, then show that  dydx=log  x(1 + log x)2


If x = esin3t, y = ecos3t, then show that dydx=-ylogxxlogy.


If x = 2cos4(t + 3), y = 3sin4(t + 3), show that dydx=-3y2x.


If x = 2bt1+t2,y=a(1-t21+t2),show thatdxdy=-b2ya2x.


Find the second order derivatives of the following : x3.logx


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = 25log5sinx+16log4cosx then dydx = ______.


If y = log [cos(x5)] then find dydx


If y = log[1-cos(3x2)1+cos(3x2)], find dydx


If y = 5x. x5. xx. 55 , find dydx


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


If y = {f(x)}ϕ(x), then dydx is ______ 


If xy = ex-y, then dydx at x = 1 is ______.


ddx[(cosx)logx] = ______.


Derivative of log6x with respect 6x to is ______


log[log(logx5)]


If xm . yn = (x + y)m+n, prove that dydx=yx


If y=e12log(1+ tan2x),then dydx is equal to ____________.


If y =e3x+7,then the value|dydx|x=0 is ____________.


If f(x)=log[ex(3-x3+x)13],  then f(1) is equal to


Given f(x) = log(1+x1-x) and g(x) = 3x+x31+3x2, then fog(x) equals


If log10(x3-y3x3+y3) = 2 then dydx = ______.


If log10(x2-y2x2+y2) = 2, then dydx is equal to ______.


Find dydx, if y = (sin x)tan x – xlog x.


The derivative of log x with respect to 1x is ______.


Find dydx, if y = (log x)x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.