English

If y = 25log5sinx+16log4cosx then dddydx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.

Options

  • 1

  • 0

  • 9

  • cos x – sin x

MCQ
Fill in the Blanks

Solution

If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` 0.

Explanation:

`y = 25^(log_5 sinx) + 16^(log_4 cosx)`

`y = 5^(2 log_5 sinx) + 4^(2 log_4 cosx)`

`y = 5^(log_5 sin^2x) + 4^(log_4 cos^2x)     ...[m log n = log n^3]`

y = sin2x + cos2x     ...[alogax = x]

y = 1

then `dy/dx = 0`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - MCQ

RELATED QUESTIONS

 

if xx+xy+yx=ab, then find `dy/dx`.


Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4


Differentiate the function with respect to x.

`(x cos x)^x + (x sin x)^(1/x)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


Find `dy/dx` for the function given in the question:

yx = xy


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


If ey ( x +1)  = 1, then show that  `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that"  sin x + dy/dx` = 0


If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Find the nth derivative of the following : log (2x + 3)


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If f(x) = logx (log x) then f'(e) is ______


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`


If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.


`d/dx(x^{sinx})` = ______ 


Derivative of `log_6`x with respect 6x to is ______


`log [log(logx^5)]`


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.


The derivative of log x with respect to `1/x` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×