English

Differentiate the function with respect to x. (x + 3)2 . (x + 4)3 . (x + 5)4 - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

(x + 3)2 . (x + 4)3 . (x + 5)4

Sum

Solution

Let, y = (x + 3)2 · (x + 4)3 · (x + 5)4

Taking logarithm of both sides,

log y = log [(x + 3)2 · (x + 4)3 · (x + 5)4]

= log (x + 3)2 + log (x + 4)3 + log (x + 5)4              ...[∵ log mn = log m + log n]

= 2 log (x + 3) + 3 log (x + 4) + 4 log (x + 5)            ...[∵ log mn = n log m]

Differentiating both sides with respect to x,

`1/y dy/dx = 2 d/dx log (x + 3) + 3 d/dx log (x + 4) + 4 d/dx log (x + 5)`

`1/y dy/dx = 2 * 1/(x + 3) d/dx (x + 3) + 3 xx 1/(x+ 4) d/dx (x + 4) + 4 xx 1/(x + 5) d/dx (x + 5)`

`1/y dy/dx = (2(1 + 0))/(x + 3) + (3(1 + 0))/("x" + 4) + (4(1 + 0))/(x + 5)`

या `dy/dx = y [2/(x + 3) + 3/(x + 4) + 4/(x + 5)]`

`= y [(2 (x + 4) (x + 5) + 3 (x + 5) + 4 (x + 3) (x + 4))/((x + 3) (x + 4) (x + 5))]`

`= (x + 3)^2 (x + 4)^3 (x + 5)^4  xx [(2 (x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4 (x^ + 7x + 12))/((x + 3) (x + 4) (x + 5))]`

`⇒ dy/dx= (x + 3) (x + 4)^2 (x + 5)^3 [9x^2 + 70x + 133]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 5 | Page 178

RELATED QUESTIONS

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx`for the function given in the question:

xy + yx = 1


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


xy = ex-y, then show that  `"dy"/"dx" = ("log  x")/("1 + log x")^2`


 Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0 


If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.


If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.


If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


Choose the correct option from the given alternatives :

If xy = yx, then `"dy"/"dx"` = ..........


If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.


If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.


If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.


`d/dx(x^{sinx})` = ______ 


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


`log (x + sqrt(x^2 + "a"))`


If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


Find `dy/dx`, if y = (log x)x.


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×