Advertisements
Advertisements
Question
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
Solution
Let, y = (x + 3)2 · (x + 4)3 · (x + 5)4
Taking logarithm of both sides,
log y = log [(x + 3)2 · (x + 4)3 · (x + 5)4]
= log (x + 3)2 + log (x + 4)3 + log (x + 5)4 ...[∵ log mn = log m + log n]
= 2 log (x + 3) + 3 log (x + 4) + 4 log (x + 5) ...[∵ log mn = n log m]
Differentiating both sides with respect to x,
`1/y dy/dx = 2 d/dx log (x + 3) + 3 d/dx log (x + 4) + 4 d/dx log (x + 5)`
`1/y dy/dx = 2 * 1/(x + 3) d/dx (x + 3) + 3 xx 1/(x+ 4) d/dx (x + 4) + 4 xx 1/(x + 5) d/dx (x + 5)`
`1/y dy/dx = (2(1 + 0))/(x + 3) + (3(1 + 0))/("x" + 4) + (4(1 + 0))/(x + 5)`
या `dy/dx = y [2/(x + 3) + 3/(x + 4) + 4/(x + 5)]`
`= y [(2 (x + 4) (x + 5) + 3 (x + 5) + 4 (x + 3) (x + 4))/((x + 3) (x + 4) (x + 5))]`
`= (x + 3)^2 (x + 4)^3 (x + 5)^4 xx [(2 (x^2 + 9x + 20) + 3(x^2 + 8x + 15) + 4 (x^ + 7x + 12))/((x + 3) (x + 4) (x + 5))]`
`⇒ dy/dx= (x + 3) (x + 4)^2 (x + 5)^3 [9x^2 + 70x + 133]`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.