English

Differentiate the function with respect to x. xx-2sinx - Mathematics

Advertisements
Advertisements

Question

Differentiate the function with respect to x.

`x^x - 2^(sin x)`

Sum

Solution

Let, y = xx - 2sin x

Again, let u = xx, v = 2sin x

y = u - v
Taking logarithm of both sides of u = xx,

log u = log xx = x log x

Differentiating both sides with respect to x,

`1/u (du)/dx = x d/dx log x + log x d/dx (x)`

`=> 1/u (du)/dx = x * 1/x + log x xx 1/u (du)/dx = 1 + log x`       ...(1)

`therefore (du)/dx = u (1 + log x) = x^x (1 + log x)`        ...(2)

Now, from `v = 2^(sin x)`

`(dv)/dx= 2^ (sin x) log  2  d/dx (sin x)`

`= 2^(sin x) log  2  cos x`        ...(3)

From equation (1), y = u – v

`therefore dy/dx = (du)/dx - (dv)/dx`

Putting the values ​​of `(du)/dx` from equation (2) and `(dv)/dx` from (3),

`dy/dx = x^x (1 + log x) - 2^(sin x) (cos x. log  2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity and Differentiability - Exercise 5.5 [Page 178]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 5 Continuity and Differentiability
Exercise 5.5 | Q 4 | Page 178

RELATED QUESTIONS

 

If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`

 

Differentiate the function with respect to x. 

cos x . cos 2x . cos 3x


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Find `dy/dx`for the function given in the question:

xy + yx = 1


If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.


If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Differentiate  
log (1 + x2) w.r.t. tan-1 (x)


Differentiate : log (1 + x2)  w.r.t. cot-1 x. 


If y = (log x)x + xlog x, find `"dy"/"dx".`


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.


If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.


If f(x) = logx (log x) then f'(e) is ______


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


`"d"/"dx" [(cos x)^(log x)]` = ______.


Derivative of `log_6`x with respect 6x to is ______


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`,  then `f^'(1)` is equal to


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.


If y = `9^(log_3x)`, find `dy/dx`.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×