Advertisements
Advertisements
Question
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Solution
`y = sin^(-1) [(2.2^x)/(1 +(2^x)^2)]`
put 2x = tan θ
`∴ y = sin^(-1) [(2 tan theta ) /(1 + tan^2 theta)]`
= sin-1 [ sin 2θ ]
= 2θ
y = 2 tan-1 ( 2x )
Differentiating wrt x,
`(dy)/(dx) = 2/(1 +(2^x) )xx d/(dx) (2^x)`
`= 2/(1 + (2^x)^2) xx 2^x log 2 = (2 ^ (x+ 1))/(1 + 4^x) log 2 =" sin y log" 2`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Derivative of loge2 (logx) with respect to x is _______.
If xy = ex-y, then `"dy"/"dx"` at x = 1 is ______.
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`log [log(logx^5)]`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.