Advertisements
Advertisements
Question
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Solution
Let, y = `x^(x cos x) + (x^2 + 1)/(x^2 - 1)`
Again, let y = u + v
Differentiating both sides with respect to x,
`dy/dx = (du)/dx + (dv)/dx` ...(1)
Now, u = `x^(x cos x)`
Taking logarithm of both sides,
`log u = log x^(x cos x) = x cos x log x`
Differentiating both sides with respect to x,
`1/u (du)/dx = x cos x d/dx log x + log x d/dx x cos x`
`= x cos x * 1/x + log x [x d/dx cos x + cos x d/dx (x)]`
= cos x + log x [x (- sin x) + cos x]
= cos x + x (- sin x) · log x + cos x · log x
`therefore (du)/dx = u [cos x log x - x sin x log x + cos x]`
= `x^(x cos x)` [cos x log x - x sin x log x + cos x] ....(2)
`v = (x^2 + 1)/(x^2 - 1)`
Differentiating both sides with respect to x,
`dv/dx = ((x^2 - 1) d/dx (x^2 + 1) - (x^2 + 1) d/dx(x^2 - 1))/((x^2 - 1)^2)`
`= ((x^2 - 1)(2 x) - (x^2 + 1) (2 x))/((x^2 - 1)^2)`
`= (2 x [x^2 - 1 - x^2 - 1])/((x^2 - 1)^2)`
`= (-4x)/((x^2 - 1)^2)`
Putting the values of `(du)/dx` and `(dv)/dx` from equation (2) and (3) in equation (1),
`therefore dy/dx = (du)/dx + (dv)/dx`
`= x^(x cos x) [cos x log x - x sin x log x + cos x] - (4x)/(x^2 - 1)^2`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
Differentiate 3x w.r.t. logx3.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
The rate at which the metal cools in moving air is proportional to the difference of temperatures between the metal and air. If the air temperature is 290 K and the metal temperature drops from 370 K to 330 K in 1 O min, then the time required to drop the temperature upto 295 K.
`d/dx(x^{sinx})` = ______
`"d"/"dx" [(cos x)^(log x)]` = ______.
`8^x/x^8`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
If xy = yx, then find `dy/dx`