Advertisements
Advertisements
Question
If `(sin "x")^"y" = "x" + "y", "find" (d"y")/(d"x")`
Solution
`(sin "x")^"y" = "x" + "y"`
Take log on both the sides,
`log(sin "x")^"y" = log("x" + "y")`
⇒ `"y" log (sin "x") = log ("x" + "y")` ......(i)
Differentiate (i) w.r.t.x
`log (sin "x")· (d"y")/(d"x") + "y"· (d)/(d"x") [ log(sin "x")] = (d)/(d"x") [log ("x"+"y") ]`
⇒ `log (sin "x")· (d"y")/(d"x") + "y"· (cos "x")/(sin"x") = (1)/(("x"+"y"))· (1+ (d"y")/(d"x"))`
⇒ `(d"y")/(d"x") [ log( sin "x") - (1)/(("x"+"y"))] = (1)/(("x"+"y")) - "y"·cot "x" `
⇒ `(d"y")/(d"x") = (1 - ("xy" + "y"^2)·cot "x")/(("x"+"y")·log (sin "x") -1)`
APPEARS IN
RELATED QUESTIONS
If `y=log[x+sqrt(x^2+a^2)] ` show that `(x^2+a^2)(d^2y)/(dx^2)+xdy/dx=0`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Find `dy/dx` for the function given in the question:
yx = xy
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
if `x^m y^n = (x + y)^(m + n)`, prove that `(d^2y)/(dx^2)= 0`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Differentiate
log (1 + x2) w.r.t. tan-1 (x)
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If x = `(2bt)/(1 + t^2), y = a((1 - t^2)/(1 + t^2)), "show that" "dx"/"dy" = -(b^2y)/(a^2x)`.
Differentiate 3x w.r.t. logx3.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (2x + 3)
If y = A cos (log x) + B sin (log x), show that x2y2 + xy1 + y = 0.
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
Derivative of loge2 (logx) with respect to x is _______.
Derivative of `log_6`x with respect 6x to is ______
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Derivative of log (sec θ + tan θ) with respect to sec θ at θ = `π/4` is ______.
The derivative of x2x w.r.t. x is ______.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Find `dy/dx`, if y = (log x)x.
Find the derivative of `y = log x + 1/x` with respect to x.