Advertisements
Advertisements
Question
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Solution
y = `log(x + sqrt(x^2 + a^2))^m`
= `mlog(x + sqrt(x^2 + a^2))`
∴ `"dy"/"dx" = m"d"/"dx"[log(x + sqrt(x^2 + a^2))]`
= `m xx (1)/(x + sqrt(x^2 + a^2))."d"/"dx"(x + sqrt(x^2 + a^2))`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2))."d"/"dx"(x^2 + a^2)]`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2)).(2x + 0)]`
= `m/(x + sqrt(x^2 + a^2)) xx (sqrt(x^2 + a^2) + x)/(sqrt(x^2 + a^2)`
∴ `"dy"/"dx" = m/sqrt(x^2 + a^2)`
∴ `sqrt(x^2 + a^2)"dy"/"dx"` = m
∴ `(x^2 + a^2)(dy/dx)^2` = m2
Differentiating both sides w.r.t. x, we get
`(x^2 + a^2)."d"/"dx"(dy/dx)^2 + (dy/dx)^2."d"/"dx"(x^2 + a^2) = "d"/"dx"(m^2)`
∴ `(x^2 + a^2) xx 2"dy"/"dx"."d"/"dx"(dy/dx) + (dy/dx)^2 xx (2x + 0)` = 0
∴ `(x^2 + a^2) . 2"dy"/"dx"(d^2y)/(dx^2) + 2x (dy/dx)^2` = 0
Cancelling `2"dy"/"dx"` throughtout, we get
`(x^2 + a^2)(d^2y)/(dx^2) + x"dy"/"dx"` = 0.
RELATED QUESTIONS
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
If u, v and w are functions of x, then show that `d/dx(u.v.w) = (du)/dx v.w+u. (dv)/dx.w + u.v. (dw)/dx` in two ways-first by repeated application of product rule, second by logarithmic differentiation.
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
Evaluate
`int 1/(16 - 9x^2) dx`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Differentiate : log (1 + x2) w.r.t. cot-1 x.
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If y = (log x)x + xlog x, find `"dy"/"dx".`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Differentiate 3x w.r.t. logx3.
Find the second order derivatives of the following : x3.logx
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = `log[sqrt((1 - cos((3x)/2))/(1 +cos((3x)/2)))]`, find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If y = tan-1 `((1 - cos 3x)/(sin 3x))`, then `"dy"/"dx"` = ______.
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If y = `x^(x^2)`, then `dy/dx` is equal to ______.
If y = `log(x + sqrt(x^2 + 4))`, show that `dy/dx = 1/sqrt(x^2 + 4)`
The derivative of log x with respect to `1/x` is ______.
Find the derivative of `y = log x + 1/x` with respect to x.