मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If y = log(x+x2+a2)m, show that ddx(x2+a2)d2ydx2+xddx = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.

बेरीज

उत्तर

y = `log(x + sqrt(x^2 + a^2))^m`

= `mlog(x + sqrt(x^2 + a^2))`

∴ `"dy"/"dx" = m"d"/"dx"[log(x + sqrt(x^2 + a^2))]`

= `m xx (1)/(x + sqrt(x^2 + a^2))."d"/"dx"(x + sqrt(x^2 + a^2))`

= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2))."d"/"dx"(x^2 + a^2)]`

= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2)).(2x + 0)]`

= `m/(x + sqrt(x^2 + a^2)) xx (sqrt(x^2 + a^2) + x)/(sqrt(x^2 + a^2)`

∴ `"dy"/"dx" = m/sqrt(x^2 + a^2)`

∴ `sqrt(x^2 + a^2)"dy"/"dx"` = m

∴ `(x^2 + a^2)(dy/dx)^2` = m2

Differentiating both sides w.r.t. x, we get

`(x^2 + a^2)."d"/"dx"(dy/dx)^2 + (dy/dx)^2."d"/"dx"(x^2 + a^2) = "d"/"dx"(m^2)`

∴ `(x^2 + a^2) xx 2"dy"/"dx"."d"/"dx"(dy/dx) + (dy/dx)^2 xx (2x + 0)` = 0

∴ `(x^2 + a^2) . 2"dy"/"dx"(d^2y)/(dx^2) + 2x (dy/dx)^2` = 0

Cancelling `2"dy"/"dx"` throughtout, we get

`(x^2 + a^2)(d^2y)/(dx^2) + x"dy"/"dx"` = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

संबंधित प्रश्‍न

Differentiate the function with respect to x.

`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`


Differentiate the function with respect to x.

`(log x)^(cos x)`


Differentiate the function with respect to x.

`x^x - 2^(sin x)`


Differentiate the function with respect to x.

`(x + 1/x)^x + x^((1+1/x))`


Differentiate the function with respect to x.

(log x)x + xlog x


Differentiate the function with respect to x.

`(sin x)^x + sin^(-1) sqrtx` 


Differentiate the function with respect to x.

xsin x + (sin x)cos x


Differentiate the function with respect to x.

`x^(xcosx) + (x^2 + 1)/(x^2 -1)`


Find `dy/dx` for the function given in the question:

`xy = e^((x – y))`


Differentiate w.r.t. x the function:

xx + xa + ax + aa, for some fixed a > 0 and x > 0


If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`


If `y = sin^-1 x + cos^-1 x , "find"  dy/dx`


Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`


Find `dy/dx` if y = x+ 5x


Find `(d^2y)/(dx^2)` , if y = log x


Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`


Find `"dy"/"dx"` if y = xx + 5x


If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`


If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.


`"If"  y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that"  dy/dx = (1)/(x(2y - 1).`


If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.


If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.


If f(x) = logx (log x) then f'(e) is ______


If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`


If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?


`d/dx(x^{sinx})` = ______ 


If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.


If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`


`2^(cos^(2_x)`


`8^x/x^8`


`log (x + sqrt(x^2 + "a"))`


`log [log(logx^5)]`


If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`


`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.


`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.


If `"y" = "e"^(1/2log (1 +  "tan"^2"x")), "then"  "dy"/"dx"` is equal to ____________.


If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.


Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals


If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.


Find `dy/dx`, if y = (sin x)tan x – xlog x.


If y = `9^(log_3x)`, find `dy/dx`.


The derivative of log x with respect to `1/x` is ______.


Evaluate:

`int log x dx`


Find the derivative of `y = log x + 1/x` with respect to x.


If xy = yx, then find `dy/dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×