Advertisements
Advertisements
प्रश्न
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
उत्तर
y = `log(x + sqrt(x^2 + a^2))^m`
= `mlog(x + sqrt(x^2 + a^2))`
∴ `"dy"/"dx" = m"d"/"dx"[log(x + sqrt(x^2 + a^2))]`
= `m xx (1)/(x + sqrt(x^2 + a^2))."d"/"dx"(x + sqrt(x^2 + a^2))`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2))."d"/"dx"(x^2 + a^2)]`
= `m/(x + sqrt(x^2 + a^2)) xx [1 + (1)/(2sqrt(x^2 + a^2)).(2x + 0)]`
= `m/(x + sqrt(x^2 + a^2)) xx (sqrt(x^2 + a^2) + x)/(sqrt(x^2 + a^2)`
∴ `"dy"/"dx" = m/sqrt(x^2 + a^2)`
∴ `sqrt(x^2 + a^2)"dy"/"dx"` = m
∴ `(x^2 + a^2)(dy/dx)^2` = m2
Differentiating both sides w.r.t. x, we get
`(x^2 + a^2)."d"/"dx"(dy/dx)^2 + (dy/dx)^2."d"/"dx"(x^2 + a^2) = "d"/"dx"(m^2)`
∴ `(x^2 + a^2) xx 2"dy"/"dx"."d"/"dx"(dy/dx) + (dy/dx)^2 xx (2x + 0)` = 0
∴ `(x^2 + a^2) . 2"dy"/"dx"(d^2y)/(dx^2) + 2x (dy/dx)^2` = 0
Cancelling `2"dy"/"dx"` throughtout, we get
`(x^2 + a^2)(d^2y)/(dx^2) + x"dy"/"dx"` = 0.
संबंधित प्रश्न
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Differentiate the function with respect to x.
`(log x)^(cos x)`
Differentiate the function with respect to x.
`x^x - 2^(sin x)`
Differentiate the function with respect to x.
`(x + 1/x)^x + x^((1+1/x))`
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
`(sin x)^x + sin^(-1) sqrtx`
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`x^(xcosx) + (x^2 + 1)/(x^2 -1)`
Find `dy/dx` for the function given in the question:
`xy = e^((x – y))`
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If x = a (cos t + t sin t) and y = a (sin t – t cos t), find `(d^2y)/dx^2`
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
Find `dy/dx` if y = xx + 5x
Find `(d^2y)/(dx^2)` , if y = log x
Find `"dy"/"dx"` , if `"y" = "x"^("e"^"x")`
Find `"dy"/"dx"` if y = xx + 5x
If `"x"^(5/3) . "y"^(2/3) = ("x + y")^(7/3)` , the show that `"dy"/"dx" = "y"/"x"`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
If f(x) = logx (log x) then f'(e) is ______
If y = 5x. x5. xx. 55 , find `("d"y)/("d"x)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
If y = `("e"^"2x" sin x)/(x cos x), "then" "dy"/"dx" = ?`
`2^(cos^(2_x)`
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
`log [log(logx^5)]`
If xm . yn = (x + y)m+n, prove that `"dy"/"dx" = y/x`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
`lim_("x" -> -2) sqrt ("x"^2 + 5 - 3)/("x" + 2)` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Find `dy/dx`, if y = (sin x)tan x – xlog x.
If y = `9^(log_3x)`, find `dy/dx`.
The derivative of log x with respect to `1/x` is ______.
Evaluate:
`int log x dx`
Find the derivative of `y = log x + 1/x` with respect to x.
If xy = yx, then find `dy/dx`