मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If 2y = x+1+x-1, show that 4(x2 – 1)y2 + 4xy1 – y = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If 2y = `sqrt(x + 1) + sqrt(x - 1)`, show that 4(x2 – 1)y2 + 4xy1 – y = 0.

बेरीज

उत्तर

2y = `sqrt(x + 1) + sqrt(x - 1)`                ...[Given] (1)

Differentiating both sides w.r.t. x, we get

∴ `2 dy/dx = d/dx (sqrt(x + 1)) + d/dx (sqrt(x - 1))`

∴ `2 dy/dx = (1)/(2sqrt(x + 1))(1 + 0) + (1)/(2sqrt(x - 1))(1 - 0)`

∴ `2 dy/dx = (1)/(2sqrt(x + 1)) + (1)/(2sqrt(x - 1)`

∴ `2 dy/dx = (sqrt(x - 1) + sqrt(x + 1))/(2sqrt(x + 1).sqrt(x - 1)`

∴ `2 dy/dx = (cancel2y)/(cancel2sqrt(x^2 - 1)`                      ...[By (1)]

∴ `2sqrt(x^2 - 1) dy/dx` = y

Taking square both the sides,

∴ `4(x^2 - 1).(dy/dx)^2` = y2

Differentiating both sides w.r.t. x, we get,

`4(x^2 - 1) d/dx (dy/dx)^2 + (dy/dx)^2. d/dx [4(x^2 - 1)] = 2y dy/dx`

∴ `4(x^2 - 1).2 dy/dx.(d^2y)/(dx^2) + (dy/dx)^2 . 4(2x) = 2y(dy/dx)`

Cancelling `2 dy/dx` on both sides, we get,

`4(x^2 - 1)(d^2y)/(dx^2) + 4x dy/dx` = y

∴ `4(x^2 - 1)(d^2y)/(dx^2) + 4x dy/dx - y` = 0

∴ 4(x2 – 1)y2 + 4xy1 – y = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find  `dy/dx` in the following:

2x + 3y = sin x


Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

sin2 y + cos xy = k


Find `dy/dx` in the following:

sin2 x + cos2 y = 1


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`


If for the function 

\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]


If  \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\] 

, find f'(4).


Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


If  \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\]  exists finitely, write the value of  \[\lim_{x \to c} f\left( x \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


If y = `sqrt(cosx + sqrt(cosx + sqrt(cosx + ... ∞)`, then show that `"dy"/"dx" = sinx/(1 - 2y)`.


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that"  y^2 + "dy"/"dx"` = 0.


Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If y = `e^(mtan^-1x)`, show that `(1 + x^2)(d^2y)/(dx^2) + (2x - m)"dy"/"dx"` = 0.


If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : sin (ax + b)


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following : y = eax . cos (bx + c)


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?


Choose the correct option from the given alternatives :

If `xsqrt(y + 1) + ysqrt(x + 1) = 0 and x ≠ y, "then" "dy"/"dx"` = ........


Choose the correct option from the given alternatives :

If x = a(cosθ + θ sinθ), y = a(sinθ – θ cosθ), then `((d^2y)/dx^2)_(θ = pi/4)` = .........


Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1: 

x f(x) g(x) f')x) g'(x)
0 1   5 `(1)/(3)`
1 3 – 4 `-(1)/(3)` `-(8)/(3)`

(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`


Differentiate the following w.r.t. x:

`tan^-1(x/(1 + 6x^2)) + cot^-1((1 - 10x^2)/(7x))`


If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.


If `x = e^(x/y)`, then show that `"dy"/"dx" = (x - y)/(xlogx)`


DIfferentiate `tan^-1((sqrt(1 + x^2) - 1)/x) w.r.t. tan^-1(sqrt((2xsqrt(1 - x^2))/(1 - 2x^2)))`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`


If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.


State whether the following is True or False:

The derivative of `"x"^"m"*"y"^"n" = ("x + y")^("m + n")` is `"x"/"y"`


If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`


Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`


If y = `e^(m tan^-1x)` then show that `(1 + x^2) (d^2y)/(dx^2) + (2x - m) (dy)/(dx)` = 0


Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)


If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


`"If" log(x+y) = log(xy)+a  "then show that", dy/dx=(-y^2)/x^2`


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`


Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`


If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`


Find `dy/dx if , x = e^(3t) , y = e^sqrtt`


If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Find `dy/(dx)  "if" , x = e^(3t), y = e^sqrtt`. 


If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×