Advertisements
Advertisements
प्रश्न
Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
उत्तर
Let y = `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`
Put x = cosθ. Thenθ = cos–1x and
`sqrt((1 - x)/(1 + x)) = sqrt((1 - cosθ)/(1 + cosθ)`
= `sqrt((2sin^2(θ/2))/(2cos^2(θ/2)`
= `sqrt(tan^2(θ/2)`
= `tan(θ/2)`
∴ `tan^-1(sqrt((1 - x)/(1 + x)))`
= `tan^-1[tan(θ/2)]`
= `θ/(2)`
= `(1)/(2)cos^-1 x`
∴ y = `sin[2 xx 1/2 cos^-1 x]`
= sin (cos–1x)
∴ `"dy"/"dx" = "d"/"dx"[sin(cos-1x)]`
= `cos(cos^-1x)."d"/"dx"(cos^-1x)`
= `x xx (-1)/sqrt(1 - x^2)`
= `(-x)/sqrt(1 - x^2)`.
APPEARS IN
संबंधित प्रश्न
Find dy/dx if x sin y + y sin x = 0.
Find `dy/dx` in the following:
ax + by2 = cos y
Find `dy/dx` in the following:
`y = sin^(-1)((2x)/(1+x^2))`
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Is |sin x| differentiable? What about cos |x|?
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the derivative of f (x) = |x|3 at x = 0.
If \[\lim_{x \to c} \frac{f\left( x \right) - f\left( c \right)}{x - c}\] exists finitely, write the value of \[\lim_{x \to c} f\left( x \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Find `(dy)/(dx) if y = cos^-1 (√x)`
Differentiate tan-1 (cot 2x) w.r.t.x.
If x = tan-1t and y = t3 , find `(dy)/(dx)`.
Discuss extreme values of the function f(x) = x.logx
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
If x = `(t + 1)/(t - 1), y = (t - 1)/(t + 1), "then show that" y^2 + "dy"/"dx"` = 0.
DIfferentiate x sin x w.r.t. tan x.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following:
y = e8x . cos (6x + 7)
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Suppose that the functions f and g and their derivatives with respect to x have the following values at x = 0 and x = 1:
x | f(x) | g(x) | f')x) | g'(x) |
0 | 1 | 5 | `(1)/(3)` | |
1 | 3 | – 4 | `-(1)/(3)` | `-(8)/(3)` |
(i) The derivative of f[g(x)] w.r.t. x at x = 0 is ......
(ii) The derivative of g[f(x)] w.r.t. x at x = 0 is ......
(iii) The value of `["d"/"dx"[x^(10) + f(x)]^(-2)]_(x = 1_` is ........
(iv) The derivative of f[(x + g(x))] w.r.t. x at x = 0 is ...
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y2 = a2cos2x + b2sin2x, show that `y + (d^2y)/(dx^2) = (a^2b^2)/y^3`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
Find `"dy"/"dx" if, sqrt"x" + sqrt"y" = sqrt"a"`
Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if, `"x"^"y" = "e"^("x - y")`
Find `"dy"/"dx"` if, xy = log (xy)
If x2 + y2 = t + `1/"t"` and x4 + y4 = t2 + `1/"t"^2` then `("d"y)/("d"x)` = ______
If y = `sqrt(tansqrt(x)`, find `("d"y)/("d"x)`.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
Find `(dy)/(dx)`, if `y = sin^-1 ((2x)/(1 + x^2))`
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
y = `e^(x3)`
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
If `tan ((x + y)/(x - y))` = k, then `dy/dx` is equal to ______.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
Find `dy/dx` if , x = `e^(3t), y = e^(sqrtt)`
Find `dy/dx if , x = e^(3t) , y = e^sqrtt`
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (−y^2)/x^2`
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a, then show that `dy/dx = (-y^2)/x^2`