Advertisements
Advertisements
प्रश्न
If sin y = x sin (a + y), then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
उत्तर
sin y = x sin(a + y)
⇒ `x = sin y/(sin (a + y))` ....(i)
Differentiating (i) w.r.t.x,
⇒ 1 = `(sin(a + y).(d/dx sin y) - sin y. (d/dx sin (a + y)))/sin^2 (a + y)`
⇒ ` sin(a + y).cos y - d/dx - sin y. cos (a + y). d/dx = sin^2 (a + y)`]
⇒ `d/dx [ sin ( a + y) . cos y - sin y. cos ( a + y)] = sin^2 (a + y)`
⇒ `dy/dx[ sin ( a + y - y)] = sin^2 (a + y)`
⇒ `dy/dx = (sin^2 (a + y))/(sin a)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
2x + 3y = sin y
Find `dy/dx` in the following:
xy + y2 = tan x + y
Find `dx/dy` in the following.
x2 + xy + y2 = 100
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `x^y + y^x = a^b`then Find `dy/dx`
If f (x) = |x − 2| write whether f' (2) exists or not.
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if
Find `dy/dx if x^3 + y^2 + xy = 7`
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Find `(dy)/(dx) , "If" x^3 + y^2 + xy = 10`
If ex + ey = ex+y, then show that `"dy"/"dx" = -e^(y - x)`.
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)
Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.
Find `"dy"/"dx"` if : x = t2 + t + 1, y = `sin((pit)/2) + cos((pit)/2) "at" t = 1`
Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`
Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`
DIfferentiate x sin x w.r.t. tan x.
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If x = a sin t – b cos t, y = a cos t + b sin t, show that `(d^2y)/(dx^2) = -(x^2 + y^2)/(y^3)`.
Find the nth derivative of the following : apx+q
Find the nth derivative of the following : sin (ax + b)
Find the nth derivative of the following : cos (3 – 2x)
Find the nth derivative of the following : `(1)/(3x - 5)`
Find the nth derivative of the following : y = eax . cos (bx + c)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
Choose the correct option from the given alternatives :
If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to
Choose the correct option from the given alternatives :
If f(x) = `sin^-1((4^(x + 1/2))/(1 + 2^(4x)))`, which of the following is not the derivative of f(x)?
Choose the correct option from the given alternatives :
If y = sin (2sin–1 x), then dx = ........
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, yex + xey = 1
Find `"dy"/"dx"` if, xy = log (xy)
If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______
If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.
`(dy)/(dx)` of `xy + y^2 = tan x + y` is
Differentiate w.r.t x (over no. 24 and 25) `e^x/sin x`
Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)
If 2x + 2y = 2x+y, then `(dy)/(dx)` is equal to ______.
Let y = y(x) be a function of x satisfying `ysqrt(1 - x^2) = k - xsqrt(1 - y^2)` where k is a constant and `y(1/2) = -1/4`. Then `(dy)/(dx)` at x = `1/2`, is equal to ______.
If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... + ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.
Find `dy/dx` at x = 0.
Find `dy/dx if, x= e^(3t), y = e^sqrtt`
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
If log (x+y) = log (xy) + a then show that, `dy/dx= (-y^2)/(x^2)`
If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y
Find `dy / dx` if, x = `e^(3t), y = e^sqrt t`
Solve the following.
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = e3t, y = `e^sqrtt`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`