Advertisements
Advertisements
प्रश्न
If x sin (a + y) + sin a . cos (a + y) = 0, then show that `"dy"/"dx" = (sin^2(a + y))/(sina)`.
उत्तर १
x sin (a + y) + sin a . cos (a + y) = 0 ...(1)
Differentiating w.r.t. x, we get
`x"d"/"dx"[sin(a + y)] + sin(a + y)."d"/"dx"(x) + (sina)."d"/"dx"[cos(a + y)]= 0`
`∴ xcos(a + y)."d"/"dx"(a + y) + sin(a + y) xx 1 + (sina) [-sin(a + y)]."d"/"dx"(a + y) = 0`
`∴ xcos(a + y).(0 + dy/dx) + sin(a + y) - sina.sin(a + y)(0 + dy/dx) = 0`
`∴ xcos(a + y)"dy"/"dx" + sin(a + y) - sina.sin(a + y)"dy"/"dx" = 0`
`∴ sina.sin(a + y)"dy"/"dx" - xcos(a + y)"dy"/"dx" = sin(a + y)`
`∴ [sina.sin(a + y) - xcos(a + y)]"dy"/"dx" = sin(a + y)`
`∴ "dy"/"dx" = (sin(a + y))/(sina.sin(a + y) - xcos(a + y)`
From (1),
`x = (-sina.cos(a + y))/(sin(a + y)`
`∴ "dy"/"dx" = (sin(a + y))/(sina.sin(a + y) + (sina.cos(a + y))/(sin(a + y)).cos(a + y)`
`= (sin^2(a + y))/(sina.sin^2(a + y) + sina.cos^2(a + y)`
`= (sin^2(a + y))/(sina[sin^2(a + y) + cos^2(a + y)]`
`∴ "dy"/"dx" = (sin^2(a + y))/(sina)`.
उत्तर २
x sin (a + y) + sin a . cos (a + y) = 0
∴ x sin (a + y) = – sin a. cos (a + y)
∴ x = `-sina.(cos(a + y))/(sin(a + y)`
∴ x = – sin a . cot (a + y)
Differentiating both sides w.r.t. y, we get
`"dx"/"dy" = -sina."d"/"dx"[cot(a + y)]`
= `-sina.[-"cosec"^2(a + y)]."d"/"dx"(a + y)`
= sin a . cosec2(a + y) . (0 + 1)
= `(sina)/(sin^2(a + y)`
∴ `"dy"/"dx" = (1)/((dx/dy)`
= `(sin^2(a + y))/(sina)`.
APPEARS IN
संबंधित प्रश्न
If y=eax ,show that `xdy/dx=ylogy`
If xpyq = (x + y)p+q then Prove that `dy/dx = y/x`
Find `dy/dx` in the following:
2x + 3y = sin x
Find `dy/dx` in the following:
sin2 y + cos xy = k
if `x^y + y^x = a^b`then Find `dy/dx`
if `(x^2 + y^2)^2 = xy` find `(dy)/(dx)`
Show that the derivative of the function f given by
If for the function
\[\Phi \left( x \right) = \lambda x^2 + 7x - 4, \Phi'\left( 5 \right) = 97, \text { find } \lambda .\]
If \[f\left( x \right) = x^3 + 7 x^2 + 8x - 9\]
, find f'(4).
Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ
Find `"dy"/"dx"` ; if y = cos-1 `("2x" sqrt (1 - "x"^2))`
Differentiate e4x + 5 w.r..t.e3x
Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`
If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`
Find `"dy"/"dx"` if x = at2, y = 2at.
Find `"dy"/"dx"`, if : x = sinθ, y = tanθ
Find `"dy"/"dx"`, if : `x = cos^-1((2t)/(1 + t^2)), y = sec^-1(sqrt(1 + t^2))`
Find `"dy"/"dx"` if : x = cosec2θ, y = cot3θ at θ= `pi/(6)`
Find `"dy"/"dx"` if : x = a cos3θ, y = a sin3θ at θ = `pi/(3)`
Differentiate `sin^-1((2x)/(1 + x^2))w.r.t. cos^-1((1 - x^2)/(1 + x^2))`
Differentiate `tan^-1((x)/(sqrt(1 - x^2))) w.r.t. sec^-1((1)/(2x^2 - 1))`.
Differentiate `cos^-1((1 - x^2)/(1 + x^2)) w.r.t. tan^-1 x.`
Find `(d^2y)/(dx^2)` of the following : x = a(θ – sin θ), y = a(1 – cos θ)
If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.
If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.
If y = eax.sin(bx), show that y2 – 2ay1 + (a2 + b2)y = 0.
If `sec^-1((7x^3 - 5y^3)/(7^3 + 5y^3)) = "m", "show" (d^2y)/(dx^2)` = 0.
Find the nth derivative of the following : (ax + b)m
Find the nth derivative of the following:
`(1)/x`
Find the nth derivative of the following : eax+b
Find the nth derivative of the following : cos x
Find the nth derivative of the following : sin (ax + b)
Choose the correct option from the given alternatives :
Let `f(1) = 3, f'(1) = -(1)/(3), g(1) = -4 and g'(1) =-(8)/(3).` The derivative of `sqrt([f(x)]^2 + [g(x)]^2` w.r.t. x at x = 1 is
If y `tan^-1(sqrt((a - x)/(a + x)))`, where – a < x < a, then `"dy"/"dx"` = .........
Choose the correct option from the given alternatives :
If y = `a cos (logx) and "A"(d^2y)/(dx^2) + "B""dy"/"dx" + "C"` = 0, then the values of A, B, C are
Solve the following :
f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?
Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`
Differentiate the following w.r.t. x : `tan^-1((sqrt(x)(3 - x))/(1 - 3x))`
Differentiate the following w.r.t. x : `cos^-1((sqrt(1 + x) - sqrt(1 - x))/2)`
If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.
Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).
Differentiate `tan^-1((sqrt(1 + x^2) - 1)/x)` w.r.t. `cos^-1(sqrt((1 + sqrt(1 + x^2))/(2sqrt(1 + x^2))))`
If log y = log (sin x) – x2, show that `(d^2y)/(dx^2) + 4x "dy"/"dx" + (4x^2 + 3)y` = 0.
If x= a cos θ, y = b sin θ, show that `a^2[y(d^2y)/(dx^2) + (dy/dx)^2] + b^2` = 0.
If y = Aemx + Benx, show that y2 – (m + n)y1 + mny = 0.
Find `"dy"/"dx"` if, x3 + y3 + 4x3y = 0
Find `"dy"/"dx"` if, yex + xey = 1
Solve the following:
If `"x"^5 * "y"^7 = ("x + y")^12` then show that, `"dy"/"dx" = "y"/"x"`
Choose the correct alternative.
If y = 5x . x5, then `"dy"/"dx" = ?`
If y = `("x" + sqrt("x"^2 - 1))^"m"`, then `("x"^2 - 1) "dy"/"dx"` = ______.
Find `"dy"/"dx"` if x = `"e"^"3t", "y" = "e"^(sqrt"t")`.
If x2 + y2 = 1, then `(d^2x)/(dy^2)` = ______.
State whether the following statement is True or False:
If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt("a"))`
`(dy)/(dx)` of `2x + 3y = sin x` is:-
`"If" log(x+y) = log(xy)+a "then show that", dy/dx=(-y^2)/x^2`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/dx` if, x = `e^(3t)`, y = `e^sqrtt`
If log (x + y) = log (xy) + a then show that, `dy/dx = (−y^2)/x^ 2`
Find `dy/dx` if, `x = e^(3t), y = e^sqrtt`
Find `dy/dx"if", x= e^(3t), y=e^sqrtt`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`
Find `dy/(dx) "if" , x = e^(3t), y = e^sqrtt`.
Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`
If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`