मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find dydx if x + sin(x + y) = y – cos(x – y) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `(dy)/(dx)` if x + sin(x + y) = y – cos(x – y)

बेरीज

उत्तर

Given: x + sin(x + y) = y – cos(x – y)

To Find: Derivative of x + sin(x + y) = y – cos(x – y)

Step-by-step explanation:

Apply the sum/Difference Rule: (f ± g)' = f' ± g'

= `d/(dx) (x) + d/(dx) (sin(x + y)) - d/(dx) (y) + d/(dx) (cos(x - y))`

  1. `d/(dx) (x)` = 1
  2. `d/(dx) (sin(x + y)) = cos(x + y) + cos(x + y)((dy)/(dx))`
  3. `- d/(dx) (y) = - (dy)/(dx)`
  4. `d/(dx) (cos(x - y))`

Adding up all, we get;

⇒ 0 = `1 + cos(x + y)(1 + d/(dx) (y)) - d/(dx) (y) - sin(x - y)(1 - d/(dx) (y))`

Taking `(dy)/(dx)` on the left-hand side of the equation, we get:

`(dy)/(dx) = (1 + cos(x + y) - sin(x - y))/(- cos(x + y) + 1- sin(x - y))`

Hence, the derivative of the given equation is: `(1 + cos(x + y) - sin(x - y))/(1 - cos(x + y) - sin(x - y))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Differentiation - Exercise 1.3 [पृष्ठ ४०]

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find `dy/dx` in the following:

ax + by2 = cos y


Find `dy/dx` in the following:

`y = sin^(-1)((2x)/(1+x^2))`


Show that the derivative of the function f given by 

\[f\left( x \right) = 2 x^3 - 9 x^2 + 12x + 9\], at x = 1 and x = 2 are equal.

Find the derivative of the function f defined by f (x) = mx + c at x = 0.


Is |sin x| differentiable? What about cos |x|?


If f (x) = |x − 2| write whether f' (2) exists or not.


Write the derivative of f (x) = |x|3 at x = 0.


Let \[f\left( x \right)\begin{cases}a x^2 + 1, & x > 1 \\ x + 1/2, & x \leq 1\end{cases}\] . Then, f (x) is derivable at x = 1, if 


Find `dy/dx if x^3 + y^2 + xy = 7`


Find `"dy"/"dx"` ; if x = sin3θ , y = cos3θ


Differentiate e4x + 5 w.r..t.e3x


Find `(dy)/(dx) , "If"   x^3 + y^2 + xy = 10`


Find `(dy)/(dx) if y = cos^-1 (√x)`


Find `(dy)/(dx)` if `y = sin^-1(sqrt(1-x^2))`


If x = tan-1t and y = t3 , find `(dy)/(dx)`.


Discuss extreme values of the function f(x) = x.logx


If `sin^-1((x^5 - y^5)/(x^5 + y^5)) = pi/(6), "show that" "dy"/"dx" = x^4/(3y^4)`


Find `"dy"/"dx"` if x = at2, y = 2at.


Find `"dy"/"dx"` if x = a cot θ, y = b cosec θ


Find `"dy"/"dx"`, if : x = `sqrt(a^2 + m^2), y = log(a^2 + m^2)`


Find `"dy"/"dx"`, if : x = a(1 – cosθ), y = b(θ – sinθ)


Find `"dy"/"dx"`, if : x = `(t + 1/t)^a, y = a^(t+1/t)`, where a > 0, a ≠ 1, t ≠ 0.


Find `dy/dx` if : x = 2 cos t + cos 2t, y = 2 sin t – sin 2t at t = `pi/(4)`


Find `"dy"/"dx"` if : x = t + 2sin (πt), y = 3t – cos (πt) at t = `(1)/(2)`


DIfferentiate x sin x w.r.t. tan x.


Differentiate `tan^-1((cosx)/(1 + sinx)) w.r.t. sec^-1 x.`


Differentiate `tan^-1((sqrt(1 + x^2) - 1)/(x)) w.r.t  tan^-1((2xsqrt(1 - x^2))/(1 - 2x^2))`.


Find `(d^2y)/(dx^2)` of the following : x = sinθ, y = sin3θ at θ = `pi/(2)`


If x = at2 and y = 2at, then show that `xy(d^2y)/(dx^2) + a` = 0.


If x = cos t, y = emt, show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" - m^2y` = 0.


If y = sin (m cos–1x), then show that `(1 - x^2)(d^2y)/(dx^2) - x"dy"/"dx" + m^2y` = 0.


Find the nth derivative of the following : eax+b 


Find the nth derivative of the following : cos (3 – 2x)


Find the nth derivative of the following : `(1)/(3x - 5)`


Find the nth derivative of the following:

y = e8x . cos (6x + 7)


Choose the correct option from the given alternatives :

If y = sec (tan –1x), then `"dy"/"dx"` at x = 1, is equal to


Choose the correct option from the given alternatives :

If y = sin (2sin–1 x), then dx = ........


Choose the correct option from the given alternatives :

If y = `tan^-1(x/(1 + sqrt(1 - x^2))) + sin[2tan^-1(sqrt((1 - x)/(1 + x)))] "then" "dy"/"dx"` = ...........


If y `tan^-1(sqrt((a - x)/(a +  x)))`, where – a < x < a, then `"dy"/"dx"` = .........


Solve the following : 

f(x) = –x, for – 2 ≤ x < 0
= 2x, for 0 ≤ x < 2
= `(18 - x)/(4)`, for 2 < x ≤ 7
g(x) = 6 – 3x, for 0 ≤ x < 2
= `(2x - 4)/(3)`, for 2 < x ≤ 7
Let u (x) = f[g(x)], v(x) = g[f(x)] and w(x) = g[g(x)]. Find each derivative at x = 1, if it exists i.e. find u'(1), v' (1) and w'(1). If it doesn't exist, then explain why?


Differentiate the following w.r.t. x : `sin[2tan^-1(sqrt((1 - x)/(1 + x)))]`


Differentiate the following w.r.t. x : `sin^2[cot^-1(sqrt((1 + x)/(1 - x)))]`


If `sqrt(y + x) + sqrt(y - x)` = c, show that `"dy"/"dx" = y/x - sqrt(y^2/x^2 - 1)`.


If `xsqrt(1 - y^2) + ysqrt(1 - x^2)` = 1, then show that `"dy"/"dx" = -sqrt((1 - y^2)/(1 - x^2)`.


Differentiate log `[(sqrt(1 + x^2) + x)/(sqrt(1 + x^2 - x)]]` w.r.t. cos (log x).


Find `"dy"/"dx"` if, x3 + x2y + xy2 + y3 = 81


Find `"dy"/"dx"` if, yex + xey = 1 


Choose the correct alternative.

If y = 5x . x5, then `"dy"/"dx" = ?` 


If `"x"^7*"y"^9 = ("x + y")^16`, then show that `"dy"/"dx" = "y"/"x"`


If x = a t4 y = 2a t2 then `("d"y)/("d"x)` = ______


If x = sin θ, y = tan θ, then find `("d"y)/("d"x)`.


If `sqrt(x) + sqrt(y) = sqrt("a")`, then `("d"y)/("d"x)` is ______


`(dy)/(dx)` of `2x + 3y = sin x` is:-


Find `(d^2y)/(dy^2)`, if y = e4x


If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then `(d^2y)/(dx^2)` at x = 0 is equal to ______.


If y = `sqrt(tan x + sqrt(tanx + sqrt(tanx + .... +  ∞)`, then show that `dy/dx = (sec^2x)/(2y - 1)`.

Find `dy/dx` at x = 0.


Find `dy/dx if, x= e^(3t), y = e^sqrtt`


If log(x+y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


If y = `(x + sqrt(x^2 - 1))^m`, show that `(x^2 - 1)(d^2y)/(dx^2) + xdy/dx` = m2y


Find `dy/dx` if, x = e3t, y = `e^sqrtt`


Find `dy/dx` if, `x = e^(3t), y = e^(sqrtt)`


If log(x + y) = log(xy) + a then show that, `dy/dx=(-y^2)/x^2`


Find `dy/dx"if", x= e^(3t), y=e^sqrtt`


If log(x + y) = log(xy) + a then show that, `dy/dx = (-y^2)/x^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×