Advertisements
Advertisements
प्रश्न
Find `(d^2y)/(dx^2)` , if y = log x
उत्तर
∵ y = log x
∵ `(dy)/(dx) = 1/x = x^-1`
and `(d^2y)/(dx^2) = -x^-2 = (-1)/x^2`
APPEARS IN
संबंधित प्रश्न
Differentiate the function with respect to x.
(x + 3)2 . (x + 4)3 . (x + 5)4
If cos y = x cos (a + y), with cos a ≠ ± 1, prove that `dy/dx = cos^2(a+y)/(sin a)`
If `y = e^(acos^(-1)x)`, -1 <= x <= 1 show that `(1- x^2) (d^2y)/(dx^2) -x dy/dx - a^2y = 0`
xy = ex-y, then show that `"dy"/"dx" = ("log x")/("1 + log x")^2`
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If x7 . y5 = (x + y)12, show that `("d"y)/("d"x) = y/x`
Derivative of loge2 (logx) with respect to x is _______.
`8^x/x^8`
`log (x + sqrt(x^2 + "a"))`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"y" = "e"^(1/2log (1 + "tan"^2"x")), "then" "dy"/"dx"` is equal to ____________.
If y = `9^(log_3x)`, find `dy/dx`.
Find `dy/dx`, if y = (log x)x.