Advertisements
Advertisements
प्रश्न
If log (x + y) = log(xy) + p, where p is a constant, then prove that `"dy"/"dx" = (-y^2)/(x^2)`.
उत्तर
log (x + y) = log(xy) + p
∴ log( x + y) = logx + logy + p
Differentiating both sides w.r.t. x, we get
`(1)/(x + y)."d"/"dx"(x + y) = (1)/x + (1)/y."dy"/"dx" + 0`
∴ `(1)/(x + y)(1 + "dy"/"dx") = (1)/x + (1)/y."dy"/"dx"`
∴ `(1)/(x + y) + (1)/(x + y)."dy"/"dx" = (1)/x + (1)/y."dy"/"dx"`
∴ `(1/(x + y) - 1/y)"dy"/"dx" = (1)/x - (1)/(x + y)`
∴ `[(y - x - y)/(y(x + y))]"dy"/"dx" = (x + y - x)/(x(x + y)`
∴ `[(-x)/(y(x + y))]"dy"/"dx" = y/(x(x + y)`
∴ `(-x/y)"dy"/"dx" = y/x`
∴ `"dy"/"dx" = -y^2/x^2`.
APPEARS IN
संबंधित प्रश्न
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
if xx+xy+yx=ab, then find `dy/dx`.
Differentiate the function with respect to x.
`sqrt(((x-1)(x-2))/((x-3)(x-4)(x-5)))`
Find `dy/dx`for the function given in the question:
xy + yx = 1
Differentiate w.r.t. x the function:
xx + xa + ax + aa, for some fixed a > 0 and x > 0
If `y = sin^-1 x + cos^-1 x , "find" dy/dx`
If ey ( x +1) = 1, then show that `(d^2 y)/(dx^2) = ((dy)/(dx))^2 .`
Find `(dy)/(dx) , if y = sin ^(-1) [2^(x +1 )/(1+4^x)]`
If xy = ex–y, then show that `"dy"/"dx" = logx/(1 + logx)^2`.
If y = `x^(x^(x^(.^(.^.∞))`, then show that `"dy"/"dx" = y^2/(x(1 - logy).`.
If ey = yx, then show that `"dy"/"dx" = (logy)^2/(log y - 1)`.
If x = `asqrt(secθ - tanθ), y = asqrt(secθ + tanθ), "then show that" "dy"/"dx" = -y/x`.
If x = esin3t, y = ecos3t, then show that `dy/dx = -(ylogx)/(xlogy)`.
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = log(1 + t2), y = t – tan–1t,show that `"dy"/"dx" = sqrt(e^x - 1)/(2)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
Find the second order derivatives of the following : x3.logx
Find the second order derivatives of the following : log(logx)
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
If y = log (log 2x), show that xy2 + y1 (1 + xy1) = 0.
Find the nth derivative of the following : log (ax + b)
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If y = `log[4^(2x)((x^2 + 5)/sqrt(2x^3 - 4))^(3/2)]`, find `("d"y)/("d"x)`
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
Derivative of `log_6`x with respect 6x to is ______
`8^x/x^8`
`lim_("x" -> 0)(1 - "cos x")/"x"^2` is equal to ____________.
If `"f" ("x") = sqrt (1 + "cos"^2 ("x"^2)), "then the value of f'" (sqrtpi/2)` is ____________.
If `f(x) = log [e^x ((3 - x)/(3 + x))^(1/3)]`, then `f^'(1)` is equal to
Given f(x) = `log((1 + x)/(1 - x))` and g(x) = `(3x + x^3)/(1 + 3x^2)`, then fog(x) equals
If y = `9^(log_3x)`, find `dy/dx`.
Find the derivative of `y = log x + 1/x` with respect to x.